Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ageing affects almost all aspects of life and therefore is an important process across societies, human and non-human animal alike. This article introduces new research exploring the complex interplay between individual-level ageing and demography, and the consequences this interplay holds for the structure and functioning of societies across various natural populations. We discuss how this Special Issue provides a foundation for integrating perspectives from evolutionary biology, behavioural ecology and demography to provide new insights into how ageing shapes individuals’ social behaviour and social associations, and how this in turn impacts social networks, social processes (such as disease or information transfer) and fitness. Through examining these topics across taxa, from invertebrates to birds and mammals, we outline how contemporary studies are using natural populations to advance our understanding of the relationship between age and society in innovative ways. We highlight key emerging research themes from this Special Issue, such as how sociality affects lifespan and health, the genetic and ecological underpinnings of social ageing and the adaptive strategies employed by different species. We conclude that this Special Issue underscores the importance of studying social ageing using diverse systems and interdisciplinary approaches for advancing evolutionary and ecological insights into both ageing and sociality more generally. This article is part of the discussion meeting issue ‘Understanding age and society using natural populations ’.more » « less
-
All animals exhibit some combination of spatial and social behaviours. A diversity of interactions occurs between such behaviours, producing emergent phenomena atthe spatial–social interface. Untangling and interrogating these complex, intertwined processes can be vital for identifying the mechanisms, causes and consequences of behavioural variation in animal ecology. Nevertheless, the integrated study of the interactions between spatial and social phenotypes and environments (at the spatial–social interface) is in its relative infancy. In this theme issue, we present a collection of papers chosen to expand the spatial–social interface along several theoretical, methodological and empirical dimensions. They detail new perspectives, methods, study systems and more, as well as offering roadmaps for applied outputs and detailing exciting new directions for the field to move in the future. In this Introduction, we outline the contents of these papers, placing them in the context of what comes before, and we synthesize a number of takeaways and future directions for the spatial–social interface. This article is part of the theme issue ‘The spatial–social interface: a theoretical and empirical integration’.more » « less
-
Ageing is associated with profound changes in behaviour that could influence exposure and susceptibility to infectious disease. As well as determining emergent patterns of infection across individuals of different ages, behavioural ageing could interact with, confound, or counteract age-related changes in other traits. Here, we examine how behavioural ageing can manifest and influence patterns of infection in wild animals. We discuss a range of age-related changes that involve interactions between behaviour and components of exposure and susceptibility to infection, including social ageing and immunosenescence, acquisition of novel parasites with age, changes in spatial behaviours, and age-related hygiene and sickness behaviours. Overall, most behavioural changes are expected to result in a reduced exposure rate, but there is relatively little evidence for this phenomenon, emerging largely from a rarity of explicit tests of exposure changes over the lifespan. This review offers a framework for understanding how ageing, behaviour, immunity, and infection interact, providing a series of hypotheses and testable predictions to improve our understanding of health in ageing societies.more » « less
-
Abstract Pathogen evolution is one of the least predictable components of disease emergence, particularly in nature. Here, building on principles established by the geographic mosaic theory of coevolution, we develop a quantitative, spatially explicit framework for mapping the evolutionary risk of viral emergence. Driven by interest in diseases like Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS), and Coronavirus disease 2019 (COVID-19), we examine the global biogeography of bat-origin betacoronaviruses, and find that coevolutionary principles suggest geographies of risk that are distinct from the hotspots and coldspots of host richness. Further, our framework helps explain patterns like a unique pool of merbecoviruses in the Neotropics, a recently discovered lineage of divergent nobecoviruses in Madagascar, and—most importantly—hotspots of diversification in southeast Asia, sub-Saharan Africa, and the Middle East that correspond to the site of previous zoonotic emergence events. Our framework may help identify hotspots of future risk that have also been previously overlooked, like West Africa and the Indian subcontinent, and may more broadly help researchers understand how host ecology shapes the evolution and diversity of pandemic threats.more » « less
-
Animal sociality emerges from individual decisions on how to balance the costs and benefits of being sociable. Novel pathogens introduced into wildlife populations should increase the costs of sociality, selecting against gregariousness. Using an individual-based model that captures essential features of pathogen transmission among social hosts, we show how novel pathogen introduction provokes the rapid evolutionary emergence and coexistence of distinct social movement strategies. These strategies differ in how they trade the benefits of social information against the risk of infection. Overall, pathogen-risk-adapted populations move more and have fewer associations with other individuals than their pathogen-risk-naive ancestors, reducing disease spread. Host evolution to be less social can be sufficient to cause a pathogen to be eliminated from a population, which is followed by a rapid recovery in social tendency. Our conceptual model is broadly applicable to a wide range of potential host–pathogen introductions and offers initial predictions for the eco-evolutionary consequences of wildlife pathogen spillover scenarios and a template for the development of theory in the ecology and evolution of animals’ movement decisions.more » « less
-
Pathogen traits can vary greatly and heavily impact the ability of a pathogen to persist in a population. Although this variation is fundamental to disease ecology, little is known about the evolutionary pressures that drive these differences, particularly where they interact with host behaviour. We hypothesized that host behaviours relevant to different transmission routes give rise to differences in contact network structure, constraining the space over which pathogen traits can evolve to maximize fitness. Our analysis of 232 contact networks across mammals, birds, reptiles, amphibians, arthropods, fish and molluscs found that contact network topology varies by contact type, most notably in networks that are representative of fluid-exchange transmission. Using infectious disease model simulations, we showed that these differences in network structure suggest pathogens transmitted through fluid-exchange contact types will need traits associated with high transmissibility to successfully proliferate, compared to pathogens that transmit through other types of contact. These findings were supported through a review of known traits of pathogens that transmit in humans. Our work demonstrates that contact network structure may drive the evolution of compensatory pathogen traits according to transmission strategy, providing essential context for understanding pathogen evolution and ecology.more » « less
-
Abstract Social systems vary enormously across the animal kingdom, with important implications for ecological and evolutionary processes such as infectious disease dynamics, anti‐predator defence, and the evolution of cooperation. Comparing social network structures between species offers a promising route to help disentangle the ecological and evolutionary processes that shape this diversity. Comparative analyses of networks like these are challenging and have been used relatively little in ecology, but are becoming increasingly feasible as the number of empirical datasets expands. Here, we provide an overview of multispecies comparative social network studies in ecology and evolution. We identify a range of advancements that these studies have made and key challenges that they face, and we use these to guide methodological and empirical suggestions for future research. Overall, we hope to motivate wider publication and analysis of open social network datasets in animal ecology.more » « less
An official website of the United States government
