- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Albrecht, Amanda V. (3)
-
Poon, Gregory M. K. (2)
-
Abate, Adam R. (1)
-
Albrecht, Amanda V (1)
-
Atkinson, T. Prescott (1)
-
Boggon, Titus J. (1)
-
Bohm, Kaitlynne A. (1)
-
Chen, Peixin Amy (1)
-
Chinn, Ivan K. (1)
-
Demaree, Benjamin (1)
-
Emehiser, Raymond G. (1)
-
Garifallou, James P. (1)
-
Germann, Markus W (1)
-
Germann, Markus W. (1)
-
Gonzalez, Michael V. (1)
-
Grant, Struan F. A. (1)
-
Hajjar, Joud (1)
-
Hakonarson, Hakon (1)
-
Hrdlicka, Patrick J. (1)
-
Huang, Kenneth (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Schneider, Amelia L.; Albrecht, Amanda V.; Huang, Kenneth; Germann, Markus W.; Poon, Gregory M. (, Life)Fixed-charge (non-polarizable) forcefields are accurate and computationally efficient tools for modeling the molecular dynamics of nucleic acid polymers, particularly DNA, well into the µs timescale. The continued utility of these forcefields depends in part on expanding the residue set in step with advancing nucleic acid chemistry and biology. A key step in parameterizing new residues is charge derivation which is self-consistent with the existing residues. As atomic charges are derived by fitting against molecular electrostatic potentials, appropriate structural models are critical. Benchmarking against the existing charge set used in current AMBER nucleic acid forcefields, we report that quantum mechanical models of deoxynucleosides, even at a high level of theory, are not optimal structures for charge derivation. Instead, structures from molecular mechanics minimization yield charges with up to 6-fold lower RMS deviation from the published values, due to the choice of such an approach in the derivation of the original charge set. We present a contemporary protocol for rendering self-consistent charges as well as optimized charges for a panel of nine non-canonical residues that will permit comparison with literature as well as studying the dynamics of novel DNA polymers.more » « less
-
Sivapragasam, Smitha; Stark, Bastian; Albrecht, Amanda V.; Bohm, Kaitlynne A.; Mao, Peng; Emehiser, Raymond G.; Roberts, Steven A.; Hrdlicka, Patrick J.; Poon, Gregory M. K.; Wyrick, John J. (, The EMBO Journal)
-
Le Coz, Carole; Nguyen, David N.; Su, Chun; Nolan, Brian E.; Albrecht, Amanda V.; Xhani, Suela; Sun, Di; Demaree, Benjamin; Pillarisetti, Piyush; Khanna, Caroline; et al (, Journal of Experimental Medicine)The pioneer transcription factor (TF) PU.1 controls hematopoietic cell fate by decompacting stem cell heterochromatin and allowing nonpioneer TFs to enter otherwise inaccessible genomic sites. PU.1 deficiency fatally arrests lymphopoiesis and myelopoiesis in mice, but human congenital PU.1 disorders have not previously been described. We studied six unrelated agammaglobulinemic patients, each harboring a heterozygous mutation (four de novo, two unphased) of SPI1, the gene encoding PU.1. Affected patients lacked circulating B cells and possessed few conventional dendritic cells. Introducing disease-similar SPI1 mutations into human hematopoietic stem and progenitor cells impaired early in vitro B cell and myeloid cell differentiation. Patient SPI1 mutations encoded destabilized PU.1 proteins unable to nuclear localize or bind target DNA. In PU.1-haploinsufficient pro–B cell lines, euchromatin was less accessible to nonpioneer TFs critical for B cell development, and gene expression patterns associated with the pro– to pre–B cell transition were undermined. Our findings molecularly describe a novel form of agammaglobulinemia and underscore PU.1’s critical, dose-dependent role as a hematopoietic euchromatin gatekeeper.more » « less
An official website of the United States government
