- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0001000003000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Aldaghri, Nasser (4)
-
Mahdavifar, Hessam (4)
-
Beirami, Ahmad (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Aldaghri, Nasser; Mahdavifar, Hessam (, IEEE Transactions on Information Forensics and Security)
-
Aldaghri, Nasser; Mahdavifar, Hessam (, 2019 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton))Cryptographic protocols are often implemented at upper layers of communication networks, while error-correcting codes are employed at the physical layer. In this paper, we consider utilizing readily-available physical layer functions, such as encoders and decoders, together with shared keys to provide a threshold-type security scheme. To this end, the effect of physical layer communication is abstracted out and the channels between the legitimate parties, Alice and Bob, and the eaves-dropper Eve are assumed to be noiseless. We introduce a model for threshold-secure coding, where Alice and Bob communicate using a shared key in such a way that Eve does not get any information, in an information-theoretic sense, about the key as well as about any subset of the input symbols of size up to a certain threshold. Then, a framework is provided for constructing threshold-secure codes form linear block codes while characterizing the requirements to satisfy the reliability and security conditions. Moreover, we propose a threshold-secure coding scheme, based on Reed-Muller (RM) codes, that meets security and reliability conditions. Furthermore, it is shown that the encoder and the decoder of the scheme can be implemented efficiently with quasi-linear time complexity. In particular, a low-complexity successive cancellation decoder is shown for the RM-based scheme. Also, the scheme is flexible and can be adapted given any key length.more » « less
-
Aldaghri, Nasser; Mahdavifar, Hessam; Beirami, Ahmad (, IEEE Access)