skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aleman, Isabel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The planetary nebula NGC 6720, also known as the “Ring Nebula,” is one of the most iconic examples of nearby planetary nebulae whose morphologies present a challenge to our theoretical understanding of the processes that govern the deaths of most stars in the Universe that evolve on a Hubble time. We present new imaging with JWST of the central star of this planetary nebula (CSPN) and its close vicinity, in the near-to-mid-IR wavelength range. We find the presence of a dust cloud around the CSPN, both from the spectral energy distribution at wavelengths ≳5μm as well as from radially extended emission in the 7.7, 10, and 11.3μm images. From the modeling of these data, we infer that the CSPN has a luminosity of 310Land is surrounded by a dust cloud with a size of ∼2600 au, consisting of relatively small amorphous silicate dust grains (radius ∼0.01μm) with a total mass of 1.9 × 10−6M. However, our best-fit model shows a significant lack of extended emission at 7.7μm—we show that such emission can arise from a smaller (7.3 × 10−7M) but uncertain mass of (stochastically heated) ionized polycyclic aromatic hydrocarbon (PAHs). However, the same energetic radiation also rapidly destroys PAH molecules, suggesting that these are most likely being continuously replenished, via the outgassing of cometary bodies and/or the collisional grinding of planetesimals. We also find significant photometric variability of the central source that could be due to the presence of a close dwarf companion of mass ≤0.1M
    more » « less
    Free, publicly-accessible full text available May 16, 2026
  2. ABSTRACT NGC 6302 is a spectacular bipolar planetary nebula (PN) whose spectrum exhibits fast outflows and highly ionized emission lines, indicating the presence of a very hot central star ($${\sim}$$220 000 K). Its infrared spectrum reveals a mixed oxygen and carbon dust chemistry, displaying both silicate and polycyclic aromatic hydrocarbon (PAH) features. Using the James Webb Space Telescope Mid-Infrared Instrument and Medium Resolution Spectrometer, a mosaic map was obtained over the core of NGC 6302, covering the wavelength range of 5–28 $$\mu$$m and spanning an area of $${\sim}$$18.5 arcsec $$\times$$ 15arcsec. The spatially resolved spectrum reveals $${\sim}$$200 molecular and ionized lines from species requiring ionization potentials of up to 205 eV. The spatial distributions highlight a complex structure at the nebula’s centre. Highly ionized species such as [Mg vii] and [Si vii] show compact structures, while lower ionization species such as H$^+$ extend much farther outwards, forming filament-defined rims that delineate a bubble. Within the bubble, the H$^+$ and H$$_2$$ emission coincide, while the PAH emission appears farther out, indicating an ionization structure distinct from typical photodissociation regions, such as the Orion Bar. This may be the first identification of a PAH formation site in a PN. This PN appears to be shaped not by a steady, continuous outflow, but by a series of dynamic, impulsive bubble ejections, creating local conditions conducive to PAH formation. A dusty torus surrounds the core, primarily composed of large ($$\mu$$m-sized) silicate grains with crystalline components. The long-lived torus contains a substantial mass of material, which could support an equilibrium chemistry and a slow dust-formation process. 
    more » « less
  3. Abstract The young and well-studied planetary nebula (PN) NGC 7027 harbors significant molecular gas that is irradiated by luminous, pointlike UV (central star) and diffuse (shocked nebular) X-ray emission. This nebula represents an excellent subject to investigate the molecular chemistry and physical conditions within photon- and X-ray-dominated regions (PDRs and XDRs). As yet, the exact formation routes of CO+and HCO+in PN environments remain uncertain. Here we present ∼2″ resolution maps of NGC 7027 in the irradiation tracers CO+and HCO+obtained with the IRAM NOEMA interferometer, along with SMA CO and HST 2.12μm H2data for context. The CO+map constitutes the first interferometric map of this molecular ion in any PN. Comparison of CO+and HCO+maps reveals strikingly different emission morphologies, as well as a systematic spatial displacement between the two molecules; the regions of brightest HCO+, found along the central waist of the nebula, are radially offset by ∼1″ (∼900 au) outside the corresponding CO+emission peaks. The CO+emission furthermore precisely traces the inner boundaries of the nebula’s PDR (as delineated by near-IR H2emission), suggesting that central star UV emission drives CO+formation. The displacement of HCO+radially outward with respect to CO+is indicative that dust-penetrating soft X-rays are responsible for enhancing the HCO+abundance in the surrounding molecular envelope, forming an XDR. These interferometric CO+and HCO+observations of NGC 7027 thus clearly establish the spatial distinction between the PDR and XDR formed (respectively) by intense UV and X-ray irradiation of molecular gas. 
    more » « less