skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Alexander Rabinovich, Gary Nirenberg"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Scaling up of transitional “warm” plasmas to industrial level gives possibility to develop plasma systems that combine advantages of thermal and non thermal discharges such as low temperature and high process selectivity (compare to thermal plasma) at high pressure and average power density. Non-equilibrium “cold” gliding arcs (with observation of equilibrium to non equilibrium transition) has been demonstrated at power level 2–3 kW and proved to be a highly efficient plasma stimulators of several plasma chemical and plasma catalytic processes, including hydrogen/syngas generation from biomass, coal and organic wastes, exhaust gas cleaning, fuel desulfurization and water cleaning from emerging contaminants. The gliding arc evolution includes initial micro-arc phase with fast transition to transient non-equilibrium phase with elevated electric field, low gas and high electron temperatures, as well as selective generation of active species typical for cold plasmas. The paper will describe experimentally achieved scaling up of the non-equilibrium gliding arc discharges to the level of 10–15 kW, as well as theoretical scaling up limitations of this powerful non-equilibrium plasma systems. 
    more » « less