skip to main content

Search for: All records

Creators/Authors contains: "Alexander, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We use the formalism developed by Wald and Zoupas to derive explicit covariant expressions for the charges and fluxes associated with the Bondi–Metzner–Sachs symmetries at null infinity in asymptotically flat spacetimes in vacuum general relativity. Our expressions hold in non-stationary regions of null infinity, are local and covariant, conformally-invariant, and are independent of the choice of foliation of null infinity and of the chosen extension of the symmetries away from null infinity. While similar expressions have appeared previously in the literature in Bondi–Sachs coordinates (to which we compare our own), such a choice of coordinates obscures these properties. Ourmore »covariant expressions can be used to obtain charge formulae in any choice of coordinates at null infinity. We also include detailed comparisons with other expressions for the charges and fluxes that have appeared in the literature: the Ashtekar–Streubel flux formula, the Komar formulae, and the linkage and twistor charge formulae. Such comparisons are easier to perform using our explicit expressions, instead of those which appear in the original work by Wald and Zoupas.« less
    Free, publicly-accessible full text available March 29, 2023
  2. The interplay between convective, rotational and magnetic forces defines the dynamics within the electrically conducting regions of planets and stars. Yet their triadic effects are separated from one another in most studies, arguably due to the richness of each subset. In a single laboratory experiment, we apply a fixed heat flux, two different magnetic field strengths and one rotation rate, allowing us to chart a continuous path through Rayleigh–Bénard convection (RBC), two regimes of magnetoconvection, rotating convection and two regimes of rotating magnetoconvection, before finishing back at RBC. Dynamically rapid transitions are determined to exist between jump rope vortex states,more »thermoelectrically driven magnetoprecessional modes, mixed wall- and oscillatory-mode rotating convection and a novel magnetostrophic wall mode. Thus, our laboratory ‘pub crawl’ provides a coherent intercomparison of the broadly varying responses arising as a function of the magnetorotational forces imposed on a liquid-metal convection system.« less
    Free, publicly-accessible full text available May 25, 2023
  3. A combined experimental and theoretical study of quantum state-resolved rotational energy transfer kinetics of optically centrifuged CO molecules is presented. In the experiments, inverted rotational distributions of CO in rotational states up to J=80 were prepared using two different optical centrifuge traps, one with the full spectral bandwidth of the optical centrifuge pulses, and one with reduced bandwidth. The relaxation kinetics of the high-J tail of the inverted distribution from each optical trap was determined based on high-resolution transient IR absorption measurements. In parallel studies, master equation simulations were performed using state-to-state rate constants for CO-CO collisions in states upmore »to J=90, based on data from double-resonance experiments for CO with J=0-29 and a fit to a statistical power exponential gap model. The model is in qualitative agreement with the observed relaxation profiles, but the observed decay rate constants are smaller than the simulated values by as much as a factor of 10. The observed decay rate constants also have a stronger J-dependence than predicted by the model. The results are discussed in terms of angular momentum and energy conservation, and compared to the observed orientational anisotropy decay kinetics of optically centrifuged CO molecules. Models for rotational energy transfer could be improved by including angular momentum effects.« less
    Free, publicly-accessible full text available April 1, 2023
  4. Free, publicly-accessible full text available March 1, 2023
  5. Free, publicly-accessible full text available April 1, 2023
  6. Free, publicly-accessible full text available January 1, 2023
  7. The insulin and insulin-like signalling (IIS) network plays an important role in mediating several life-history traits, including growth, reproduction and senescence. Although insulin-like growth factors (IGFs) 1 and 2 are both key hormones in the vertebrate IIS network, research on IGF2 in juveniles and adults has been largely neglected because early biomedical research on rodents found negligible IGF2 postnatal expression. Here, we challenge this assumption and ask to what degree IGF2 is expressed during postnatal life across amniotes by quantifying the relative gene expression of IGF1 and IGF2 using publicly available RNAseq data for 82 amniote species and quantitative polymerasemore »chain reaction on liver cDNA at embryonic, juvenile and adult stages for two lizard, bird and mouse species. We found that (i) IGF2 is expressed postnatally across amniote species and life stages—often at a higher relative expression than IGF1 , contradicting rodent models; (ii) the lack of rodent postnatal IGF2 expression is due to phylogenetic placement, not inbreeding or artificial selection; and (iii) adult IGF2 expression is sex-biased in some species. Our results demonstrate that IGF2 expression is typical for amniotes throughout life, suggesting that a comprehensive understanding of the mechanisms mediating variation in life-history traits will require studies that measure both IGFs.« less
    Free, publicly-accessible full text available February 23, 2023
  8. Store-operated calcium entry through calcium release–activated calcium (CRAC) channels replenishes intracellular calcium stores and plays a critical role in cellular calcium signaling. CRAC channels are activated by tightly regulated interaction between the endoplasmic reticulum (ER) calcium sensor STIM proteins and plasma membrane (PM) Orai channels. Our current understanding of the role of STIM–Orai-dependent calcium signals under physiologically relevant conditions remains limited in part due to a lack of spatiotemporally precise methods for direct manipulation of endogenous CRAC channels. Here, we report the synthesis and characterization of azoboronate light-operated CRAC channel inhibitors (LOCIs) that allow for a dynamic and fully reversiblemore »remote modulation of the function of native CRAC channels using ultraviolet (UV) and visible light. We demonstrate the use of LOCI-1 to modulate gene expression in T lymphocytes, cancer cell seeding at metastatic sites, and pain-related behavior.« less
    Free, publicly-accessible full text available March 29, 2023
  9. Free, publicly-accessible full text available January 13, 2023
  10. Free, publicly-accessible full text available June 6, 2023