skip to main content


Search for: All records

Creators/Authors contains: "Alexeev, Yuri"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Large machine learning models are revolutionary technologies of artificial intelligence whose bottlenecks include huge computational expenses, power, and time used both in the pre-training and fine-tuning process. In this work, we show that fault-tolerant quantum computing could possibly provide provably efficient resolutions for generic (stochastic) gradient descent algorithms, scaling as$${{{{{{{\mathcal{O}}}}}}}}({T}^{2}\times {{{{{{{\rm{polylog}}}}}}}}(n))$$O(T2×polylog(n)), wherenis the size of the models andTis the number of iterations in the training, as long as the models are both sufficiently dissipative and sparse, with small learning rates. Based on earlier efficient quantum algorithms for dissipative differential equations, we find and prove that similar algorithms work for (stochastic) gradient descent, the primary algorithm for machine learning. In practice, we benchmark instances of large machine learning models from 7 million to 103 million parameters. We find that, in the context of sparse training, a quantum enhancement is possible at the early stage of learning after model pruning, motivating a sparse parameter download and re-upload scheme. Our work shows solidly that fault-tolerant quantum algorithms could potentially contribute to most state-of-the-art, large-scale machine-learning problems.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. We compare the performance of the Quantum Approximate Optimization Algorithm (QAOA) with state-of-the-art classical solvers Gurobi and MQLib to solve the MaxCut problem on 3-regular graphs. We identify the minimum noiseless sampling frequency and depthprequired for a quantum device to outperform classical algorithms. There is potential for quantum advantage on hundreds of qubits and moderate depth with a sampling frequency of 10 kHz. We observe, however, that classical heuristic solvers are capable of producing high-quality approximate solutions in linear time complexity. In order to match this quality for large graph sizesN, a quantum device must support depthp > 11. Additionally, multi-shot QAOA is not efficient on large graphs, indicating that QAOAp ≤ 11 does not scale withN. These results limit achieving quantum advantage for QAOA MaxCut on 3-regular graphs. Other problems, such as different graphs, weighted MaxCut, and 3-SAT, may be better suited for achieving quantum advantage on near-term quantum devices.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Quantum circuit simulations enable researchers to develop quantum algorithms without the need for a physical quantum computer. Quantum computing simulators, however, all suffer from significant memory footprint requirements, which prevents large circuits from being simulated on classical super-computers. In this paper, we explore different lossy compression strategies to substantially shrink quantum circuit tensors in the QTensor package (a state-of-the-art tensor network quantum circuit simulator) while ensuring the reconstructed data satisfy the user-needed fidelity.Our contribution is fourfold. (1) We propose a series of optimized pre- and post-processing steps to boost the compression ratio of tensors with a very limited performance overhead. (2) We characterize the impact of lossy decompressed data on quantum circuit simulation results, and leverage the analysis to ensure the fidelity of reconstructed data. (3) We propose a configurable compression framework for GPU based on cuSZ and cuSZx, two state-of-the-art GPU-accelerated lossy compressors, to address different use-cases: either prioritizing compression ratios or prioritizing compression speed. (4) We perform a comprehensive evaluation by running 9 state-of-the-art compressors on an NVIDIA A100 GPU based on QTensor-generated tensors of varying sizes. When prioritizing compression ratio, our results show that our strategies can increase the compression ratio nearly 10 times compared to using only cuSZ. When prioritizing throughput, we can perform compression at the comparable speed as cuSZx while achieving 3-4× higher compression ratios. Decompressed tensors can be used in QTensor circuit simulation to yield a final energy result within 1-5% of the true energy value. 
    more » « less
  4. Abstract Random quantum circuits have been utilized in the contexts of quantum supremacy demonstrations, variational quantum algorithms for chemistry and machine learning, and blackhole information. The ability of random circuits to approximate any random unitaries has consequences on their complexity, expressibility, and trainability. To study this property of random circuits, we develop numerical protocols for estimating the frame potential, the distance between a given ensemble and the exact randomness. Our tensor-network-based algorithm has polynomial complexity for shallow circuits and is high-performing using CPU and GPU parallelism. We study 1. local and parallel random circuits to verify the linear growth in complexity as stated by the Brown–Susskind conjecture, and; 2. hardware-efficient ansätze to shed light on its expressibility and the barren plateau problem in the context of variational algorithms. Our work shows that large-scale tensor network simulations could provide important hints toward open problems in quantum information science. 
    more » « less
  5. One of the key problems in tensor network based quantum circuit simulation is the construction of a contraction tree which minimizes the cost of the simulation, where the cost can be expressed in the number of operations as a proxy for the simulation running time. This same problem arises in a variety of application areas, such as combinatorial scientific computing, marginalization in probabilistic graphical models, and solving constraint satisfaction problems. In this paper, we reduce the computationally hard portion of this problem to one of graph linear ordering, and demonstrate how existing approaches in this area can be utilized to achieve results up to several orders of magnitude better than existing state of the art methods for the same running time. To do so, we introduce a novel polynomial time algorithm for constructing an optimal contraction tree from a given order. Furthermore, we introduce a fast and high quality linear ordering solver, and demonstrate its applicability as a heuristic for providing orderings for contraction trees. Finally, we compare our solver with competing methods for constructing contraction trees in quantum circuit simulation on a collection of randomly generated Quantum Approximate Optimization Algorithm Max Cut circuits and show that our method achieves superior results on a majority of tested quantum circuits. Reproducibility: Our source code and data are available at https://github.com/cameton/HPEC2022_ContractionTrees. 
    more » « less
  6. Trapped-ion qubits are a leading technology for practical quantum computing. In this work, we present an architectural analysis of a linear-tape architecture for trapped ions. In order to realize our study, we develop and evaluate mapping and scheduling algorithms for this architecture. In particular, we introduce TILT, a linear “Turing-machinelike” architecture with a multilaser control “head,” where a linear chain of ions moves back and forth under the laser head. We find that TILT can substantially reduce communication as compared with comparable-sized Quantum Charge Coupled Device (QCCD) architectures. We also develop two important scheduling heuristics for TILT. The first heuristic reduces the number of swap operations by matching data traveling in opposite directions into an “opposing swap.”, and also avoids the maximum swap distance across the width of the head, as maximum swap distances make scheduling multiple swaps in one head position difficult. The second heuristic minimizes ion chain motion by scheduling the tape to the position with the maximal executable operations for every movement. We provide application performance results from our simulation, which suggest that TILT can outperform QCCD in a range of NISQ applications in terms of success rate (up to 4.35x and 1.95x on average). We also discuss using TILT as a building block to extend existing scalable trapped-ion quantum computing proposals. 
    more » « less
  7. Quantum circuit simulations are critical for evaluating quantum algorithms and machines. However, the number of state amplitudes required for full simulation increases exponentially with the number of qubits. In this study, we leverage data compression to reduce memory requirements, trading computation time and fidelity for memory space. Specifically, we develop a hybrid solution by combining the lossless compression and our tailored lossy compression method with adaptive error bounds at each timestep of the simulation. Our approach optimizes for compression speed and makes sure that errors due to lossy compression are uncorrelated, an important property for comparing simulation output with physical machines. Experiments show that our approach reduces the memory requirement of simulating the 61-qubit Grover's search algorithm from 32 exabytes to 768 terabytes of memory on Argonne's Theta supercomputer using 4,096 nodes. The results suggest that our techniques can increase the simulation size by 2~16 qubits for general quantum circuits. 
    more » « less