skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Alharthi, Sultan A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Radianti, J. ; Dokas, I. ; LaLone, N. ; Khazanchi, D. (Ed.)
    Search and rescue (SAR) teams are the first to respond to emergencies. This could include finding lost hikers, shoring buildings, or aiding people post-disaster. SAR combines orienteering, engineering, field medicine, and communication. Technology use in SAR has been changing with the proliferation of information communication technologies; so, we ask, how are established and emerging technologies used in SAR? Understanding how responders are adopting and adapting these technologies during SAR missions can inform future design and improve outcomes for SAR teams. We interviewed SAR volunteers to contextualize their experiences with technology and triangulated with additional questionnaire data. We discuss how technology use in SAR requires an intersection of expert knowledge and creative problem solving to overcome challenges in the field. This research contributes an understanding of the constraints on and implications for future SAR technologies and SAR operators’ creativity in emergent situations. 
    more » « less
    Free, publicly-accessible full text available May 28, 2024
  2. Search and rescue (SAR) teams are the first to respond to emergencies. This could include finding lost hikers, shoring buildings, or aiding people post-disaster. SAR combines orienteering, engineering, field medicine, and communication. Technology use in SAR has been changing with the proliferation of information communication technologies; so, we ask, how are established and emerging technologies used in SAR? Understanding how responders are adopting and adapting these technologies during SAR missions can inform future design and improve outcomes for SAR teams. We interviewed SAR volunteers to contextualize their experiences with technology and triangulated with additional questionnaire data. We discuss how technology use in SAR requires an intersection of expert knowledge and creative problem solving to overcome challenges in the field. 
    more » « less
    Free, publicly-accessible full text available May 21, 2024
  3. In multiplayer collaborative games, players need to coordinate their actions and synchronize their efforts effectively to succeed as a team; thus, individual differences can impact teamwork and gameplay. This article investigates the effects of cognitive styles on teams engaged in collaborative gaming activities. Fifty-four individuals took part in a mixed-methods user study; they were classified as field-dependent (FD) or independent (FI) based on a field-dependent–independent (FD-I) cognitive-style-elicitation instrument. Three groups of teams were formed, based on the cognitive style of each team member: FD-FD, FD-FI, and FI-FI. We examined collaborative gameplay in terms of team performance, cognitive load, communication, and player experience. The analysis revealed that FD-I cognitive style affected the performance and mental load of teams. We expect the findings to provide useful insights on understanding how cognitive styles influence collaborative gameplay. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
    Autonomous robotic vehicles (i.e., drones) are potentially transformative for search and rescue (SAR). This paper works toward wearable interfaces, through which humans team with multiple drones. We introduce the Virtual Drone Search Game as a first step in creating a mixed reality simulation for humans to practice drone teaming and SAR techniques. Our goals are to (1) evaluate input modalities for the drones, derived from an iterative narrowing of the design space, (2) improve our mixed reality system for designing input modalities and training operators, and (3) collect data on how participants socially experience the virtual drones with which they work. In our study, 17 participants played the game with two input modalities (Gesture condition, Tap condition) in counterbalanced order. Results indicated that participants performed best with the Gesture condition. Participants found the multiple controls challenging, and future studies might include more training of the devices and game. Participants felt like a team with the drones and found them moderately agentic. In our future work, we will extend this testing to a more externally valid mixed reality game. 
    more » « less
  7. Gesture recognition devices provide a new means for natural human-computer interaction. However, when selecting these devices to be used in games, designers might find it challenging to decide which gesture recognition device will work best. In the present research, we compare three vision-based, hand-gesture devices: Leap Motion, Microsoft’s Kinect, and Intel’s RealSense. The comparison provides game designers with an understanding of the main factors to consider when selecting these devices and how to design games that use them. We developed a simple hand-gesture-based game to evaluate performance, cognitive demand, comfort, and player experience of using these gesture devices. We found that participants preferred and performed much better using Leap Motion and Kinect compared to using RealSense. Leap Motion also outperformed or was equivalent to Kinect. These findings were supported by players’ accounts of their experiences using these gesture devices. Based on these findings, we discuss how such devices can be used by game designers and provide them with a set of design cautions that provide insights into the design of gesture-based games. 
    more » « less
  8. Composite wearable computers combine multiple wearable devices to form a cohesive whole. Designing these complex systems and integrating devices to effectively leverage their affordances is nontrivial. To inform the design of composite wearable computers, we undertook a grounded theory analysis of 84 wearable input devices drawing from 197 data sources, including technical specifications, research papers, and instructional videos. The resulting prescriptive design framework consists of four axes: type of interactivity, associated output modalities, mobility, and body location. This framework informs a composition-based approach to the design of wearable computers, enabling designers to identify which devices fill particular user needs and design constraints. Using this framework, designers can understand the relationship between the wearable, the user, and the environment, identify limitations in available wearable devices, and gain insights into how to address design challenges developers will likely encounter. 
    more » « less
  9. Gesture recognition devices provide a new means for natural human-computer interaction. However, when selecting these devices for games, designers might find it challenging to decide which gesture recognition device will work best. In the present research, we compare three vision-based, hand gesture devices: Leap Motion, Microsoft's Kinect, and Intel's RealSense. We developed a simple hand-gesture based game to evaluate performance, cognitive demand, comfort, and player experience of using these gesture devices. We found that participants' preferred and performed much better using Leap Motion and Kinect compared to using RealSense. Leap Motion also outperformed or was equivalent to Kinect. These findings suggest that not all gesture recognition devices can be suitable for games and that designers need to make better decisions when selecting gesture recognition devices and designing gesture based games to insure the usability, accuracy, and comfort of such games. 
    more » « less
  10. Composite wearable computers consist of multiple wearable devices connected together and working as a cohesive whole. These composite wearable computers are promising for augmenting our interaction with the physical, virtual, and mixed play spaces (e.g., mixed reality games). Yet little research has directly addressed how mixed reality system designers can select wearable input devices and how these devices can be assembled together to form a cohesive wearable computer. We present an initial taxonomy of wearable input devices to aid designers in deciding which devices to select and assemble together to support different mixed reality systems. We undertook a grounded theory analysis of 84 different wearable input devices resulting in a design taxonomy for composite wearable computers. The taxonomy consists of two axes: TYPE OF INTERACTIVITY and BODY LOCATION. These axes enable designers to identify which devices fill particular needs in the system development process and how these devices can be assembled together to form a cohesive wearable computer. 
    more » « less