skip to main content


Search for: All records

Creators/Authors contains: "Alison P. Galvani"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Russian invasion of Ukraine on February 24, 2022, has displaced more than a quarter of the population. Assessing disease burdens among displaced people is instrumental in informing global public health and humanitarian aid efforts. We estimated the disease burden in Ukrainians displaced both within Ukraine and to other countries by combining a spatiotemporal model of forcible displacement with age- and gender-specific estimates of cardiovascular disease (CVD), diabetes, cancer, HIV, and tuberculosis (TB) in each of Ukraine's 629 raions (i.e., districts). Among displaced Ukrainians as of May 13, we estimated that more than 2.63 million have CVDs, at least 615,000 have diabetes, and over 98,500 have cancer. In addition, more than 86,000 forcibly displaced individuals are living with HIV, and approximately 13,500 have TB. We estimated that the disease prevalence among refugees was lower than the national disease prevalence before the invasion. Accounting for internal displacement and healthcare facilities impacted by the conflict, we estimated that the number of people per hospital has increased by more than two-fold in some areas. As regional healthcare systems come under increasing strain, these estimates can inform the allocation of critical resources under shifting disease burdens. 
    more » « less
  2. The durability of vaccine-mediated immunity to SARS-CoV-2, the durations to breakthrough infection, and the optimal timings of booster vaccination are crucial knowledge for pandemic response. Here, we applied comparative evolutionary analyses to estimate the durability of immunity and the likelihood of breakthrough infections over time following vaccination by BNT162b2 (Pfizer-BioNTech), mRNA-1273 (Moderna), ChAdOx1 (Oxford-AstraZeneca), and Ad26.COV2.S (Johnson & Johnson/Janssen). We evaluated anti-Spike (S) immunoglobulin G (IgG) antibody levels elicited by each vaccine relative to natural infection. We estimated typical trajectories of waning and corresponding infection probabilities, providing the distribution of times to breakthrough infection for each vaccine under endemic conditions. Peak antibody levels elicited by messenger RNA (mRNA) vaccines mRNA-1273 and BNT1262b2 exceeded that of natural infection and are expected to typically yield more durable protection against breakthrough infections (median 29.6 mo; 5 to 95% quantiles 10.9 mo to 7.9 y) than natural infection (median 21.5 mo; 5 to 95% quantiles 3.5 mo to 7.1 y). Relative to mRNA-1273 and BNT1262b2, viral vector vaccines ChAdOx1 and Ad26.COV2.S exhibit similar peak anti-S IgG antibody responses to that from natural infection and are projected to yield lower, shorter-term protection against breakthrough infection (median 22.4 mo and 5 to 95% quantiles 4.3 mo to 7.2 y; and median 20.5 mo and 5 to 95% quantiles 2.6 mo to 7.0 y; respectively). These results leverage the tools from evolutionary biology to provide a quantitative basis for otherwise unknown parameters that are fundamental to public health policy decision-making. 
    more » « less
  3. The fragmented and inefficient healthcare system in the United States leads to many preventable deaths and unnecessary costs every year. During a pandemic, the lives saved and economic benefits of a single-payer universal healthcare system relative to the status quo would be even greater. For Americans who are uninsured and underinsured, financial barriers to COVID-19 care delayed diagnosis and exacerbated transmission. Concurrently, deaths beyond COVID-19 accrued from the background rate of uninsurance. Universal healthcare would alleviate the mortality caused by the confluence of these factors. To evaluate the repercussions of incomplete insurance coverage in 2020, we calculated the elevated mortality attributable to the loss of employer-sponsored insurance and to background rates of uninsurance, summing with the increased COVID-19 mortality due to low insurance coverage. Incorporating the demography of the uninsured with age-specific COVID-19 and nonpandemic mortality, we estimated that a single-payer universal healthcare system would have saved about 212,000 lives in 2020 alone. We also calculated that US$105.6 billion of medical expenses associated with COVID-19 hospitalization could have been averted by a single-payer universal healthcare system over the course of the pandemic. These economic benefits are in addition to US$438 billion expected to be saved by single-payer universal healthcare during a nonpandemic year. 
    more » « less