skip to main content

Search for: All records

Creators/Authors contains: "Alison, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 27, 2022
  2. Free, publicly-accessible full text available June 30, 2022
  3. Nehm, Ross (Ed.)
    To excel in modern science, technology, engineering, and mathematics careers, biology majors need a range of transferable skills, yet competency development is often a relatively underdeveloped facet of the undergraduate curriculum. We have elaborated the Vision and Change core competency framework into a resource called the BioSkills Guide, a set of measurable learning outcomes that can be more readily implemented by faculty. Following an iterative review process including more than 200 educators, we gathered evidence of the BioSkills Guide’s content validity using a national survey of more than 400 educators. Rates of respondent support were high (74.3–99.6%) across the 77more »outcomes in the final draft. Our national sample during the development and validation phases included college biology educators representing more than 250 institutions, including 73 community colleges, and a range of course levels and biology subdisciplines. Comparison of the BioSkills Guide with other science competency frameworks reveals significant overlap but some gaps and ambiguities. These differences may reflect areas where understandings of competencies are still evolving in the undergraduate biology community, warranting future research. We envision the BioSkills Guide supporting a variety of applications in undergraduate biology, including backward design of individual lessons and courses, competency assessment development, and curriculum mapping and planning.« less
  4. This Work-In-Progress paper seeks to continue the development of a framework with which to organize engineering ethics instructional approaches. We build on a recent coding framework that was developed as part of a systematic review of US post-secondary engineering ethics education literature. We apply and iterate on the framework by analyzing the 2016 National Academy of Engineering report, “Infusing Ethics into the Development of Engineers: Exemplary Education Activities and Programs,” which includes two-page synopses of 25 exemplary ethics programs. By applying the framework to these exemplars, we aim to identify prominent instructional approaches utilized across NAE exemplars and the extentmore »to which NAE exemplars’ instructional approaches differ from those identified in the prior systematic review. This WIP has three preliminary outcomes: (1) identification of trends in instructional design approaches across the NAE exemplars, (2) comparison of the instructional design approaches of NAE exemplars with the prior systematic review, and (3) identification of next steps needed to develop a more holistic picture of how ethics is taught in US post-secondary engineering contexts. Example revisions to the coding framework involved combining community-engagement and real-world exposure, broadening micro-insertion to sociotechnical integration, and coding for explicit mentoring components of instruction. A future research step involves further specification of these codes to detail how the NAE exemplars applied select instructional approaches, including heuristics, ethical theories, and case studies, and real-world engagement.« less
  5. Free, publicly-accessible full text available June 3, 2022
  6. Nitrogen (N) is an essential but generally limiting nutrient for biological systems. Development of the Haber-Bosch industrial process for ammonia synthesis helped to relieve N limitation of agricultural production, fueling the Green Revolution and reducing hunger. However, the massive use of industrial N fertilizer has doubled the N moving through the global N cycle with dramatic environmental consequences that threaten planetary health. Thus, there is an urgent need to reduce losses of reactive N from agriculture, while ensuring sufficient N inputs for food security. Here we review current knowledge related to N use efficiency (NUE) in agriculture and identify researchmore »opportunities in the areas of agronomy, plant breeding, biological N fixation (BNF), soil N cycling, and modeling to achieve responsible, sustainable use of N in agriculture. Amongst these opportunities, improved agricultural practices that synchronize crop N demand with soil N availability are low-hanging fruit. Crop breeding that targets root and shoot physiological processes will likely increase N uptake and utilization of soil N, while breeding for BNF effectiveness in legumes will enhance overall system NUE. Likewise, engineering of novel N-fixing symbioses in non-legumes could reduce the need for chemical fertilizers in agroecosystems but is a much longer-term goal. The use of simulation modeling to conceptualize the complex, interwoven processes that affect agroecosystem NUE, along with multi-objective optimization, will also accelerate NUE gains.« less
    Free, publicly-accessible full text available May 31, 2022