skip to main content

Search for: All records

Creators/Authors contains: "Allen, B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 4, 2023
  2. Abstract We present results of a search for periodic gravitational wave signals with frequencies between 20 and 400 Hz from the neutron star in the supernova remnant G347.3-0.5 using LIGO O2 public data. The search is deployed on the volunteer computing project Einstein@Home, with thousands of participants donating compute cycles to make this endeavour possible. We find no significant signal candidate and set the most constraining upper limits to date on the amplitude of gravitational wave signals from the target, corresponding to deformations below 10 −6 in a large part of the band. At the frequency of best strain sensitivity, near 166 Hz, we set 90% confidence upper limits on the gravitational wave intrinsic amplitude of h 0 90 % ≈ 7.0 × 10 − 26 . Over most of the frequency range our upper limits are a factor of 20 smaller than the indirect age-based upper limit.
  3. A common rehabilitation for those with lower limb movement disorders is motorized functional electrical stimulation (FES) induced cycling. Motorized FES-cycling is a switched system with uncertain dynamics, unknown disturbances, and there exists an unknown time-varying input delay between the application/removal of stimulation and the onset/removal of muscle force. This is further complicated by the fact that each participant has varying levels of sensitivity to the FES input, and the stimulation must be bounded to ensure comfort and safety. In this paper, saturated FES and motor controllers are developed for an FES-cycle that ensure safety and comfort of the participant, while likewise being robust to uncertain parameters in the dynamics, unknown disturbances, and an unknown time-varying input delay. A Lyapunov-based stability analysis is performed to ensure uniformly ultimately bounded cadence tracking.