skip to main content

Search for: All records

Creators/Authors contains: "Allen, George H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The magnitude of stream and river carbon dioxide (CO 2 ) emission is affected by seasonal changes in watershed biogeochemistry and hydrology. Global estimates of this flux are, however, uncertain, relying on calculated values for CO 2 and lacking spatial accuracy or seasonal variations critical for understanding macroecosystem controls of the flux. Here, we compiled 5,910 direct measurements of fluvial CO 2 partial pressure and modeled them against watershed properties to resolve reach-scale monthly variations of the flux. The direct measurements were then combined with seasonally resolved gas transfer velocity and river surface area estimates from a recent global hydrography dataset to constrain the flux at the monthly scale. Globally, fluvial CO 2 emission varies between 112 and 209 Tg of carbon per month. The monthly flux varies much more in Arctic and northern temperate rivers than in tropical and southern temperate rivers (coefficient of variation: 46 to 95 vs. 6 to 12%). Annual fluvial CO 2 emission to terrestrial gross primary production (GPP) ratio is highly variable across regions, ranging from negligible (<0.2%) to 18%. Nonlinear regressions suggest a saturating increase in GPP and a nonsaturating, steeper increase in fluvial CO 2 emission with discharge across regions, which leadsmore »to higher percentages of GPP being shunted into rivers for evasion in wetter regions. This highlights the importance of hydrology, in particular water throughput, in routing terrestrial carbon to the atmosphere via the global drainage networks. Our results suggest the need to account for the differential hydrological responses of terrestrial–atmospheric vs. fluvial–atmospheric carbon exchanges in plumbing the terrestrial carbon budget.« less
  2. Free, publicly-accessible full text available April 25, 2023
  3. Satellites provide a temporally discontinuous record of hydrological conditions along Earth’s rivers (e.g., river width, height, water quality). The degree to which archived satellite data effectively capture the overall population of river flow frequency is unknown. Here, we use the entire archives of Landsat 5, 7, and 8 to determine when a cloud-free image is available over the United States Geological Survey (USGS) river gauges located on Landsat-observable rivers. We compare the flow frequency distribution derived from the daily gauge record to the flow frequency distribution derived from ideally sampling gauged discharge based on the timing of cloud-free Landsat overpasses. Examining the patterns of flow frequency across multiple gauges, we find that there is not a statistically significant difference between the flow frequency distribution associated with observations contained within the Landsat archive and the flow frequency distribution derived from the daily gauge data (α = 0.05), except for hydrological extremes like maximum and minimum flow. At individual gauges, we find that Landsat observations span a wide range of hydrological conditions (97% of total flow variability observed in 90% of the study gauges) but the degree to which the Landsat sample can represent flow frequency distribution varies from location to locationmore »and depends on sample size. The results of this study indicate that the Landsat archive is, on average, representative of the temporal frequencies of hydrological conditions present along Earth’s large rivers with broad utility for hydrological, ecologic and biogeochemical evaluations of river systems.« less
  4. Abstract Non-perennial streams are widespread, critical to ecosystems and society, and the subject of ongoing policy debate. Prior large-scale research on stream intermittency has been based on long-term averages, generally using annually aggregated data to characterize a highly variable process. As a result, it is not well understood if, how, or why the hydrology of non-perennial streams is changing. Here, we investigate trends and drivers of three intermittency signatures that describe the duration, timing, and dry-down period of stream intermittency across the continental United States (CONUS). Half of gages exhibited a significant trend through time in at least one of the three intermittency signatures, and changes in no-flow duration were most pervasive (41% of gages). Changes in intermittency were substantial for many streams, and 7% of gages exhibited changes in annual no-flow duration exceeding 100 days during the study period. Distinct regional patterns of change were evident, with widespread drying in southern CONUS and wetting in northern CONUS. These patterns are correlated with changes in aridity, though drivers of spatiotemporal variability were diverse across the three intermittency signatures. While the no-flow timing and duration were strongly related to climate, dry-down period was most strongly related to watershed land use andmore »physiography. Our results indicate that non-perennial conditions are increasing in prevalence over much of CONUS and binary classifications of ‘perennial’ and ‘non-perennial’ are not an accurate reflection of this change. Water management and policy should reflect the changing nature and diverse drivers of changing intermittency both today and in the future.« less
  5. null (Ed.)
    Rivers that cease to flow are globally prevalent. Although many epithets have been used for these rivers, a consensus on terminology has not yet been reached. Doing so would facilitate a marked increase in interdisciplinary interest as well as critical need for clear regulations. Here we reviewed literature from Web of Science database searches of 12 epithets to learn (Objective 1—O1) if epithet topics are consistent across Web of Science categories using latent Dirichlet allocation topic modeling. We also analyzed publication rates and topics over time to (O2) assess changes in epithet use. We compiled literature definitions to (O3) identify how epithets have been delineated and, lastly, suggest universal terms and definitions. We found a lack of consensus in epithet use between and among various fields. We also found that epithet usage has changed over time, as research focus has shifted from description to modeling. We conclude that multiple epithets are redundant. We offer specific definitions for three epithets (non-perennial, intermittent, and ephemeral) to guide consensus on epithet use. Limiting the number of epithets used in non-perennial river research can facilitate more effective communication among research fields and provide clear guidelines for writing regulatory documents.