skip to main content

Search for: All records

Creators/Authors contains: "Alnahhas, Razan N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Our work targets automated analysis to quantify the growth dynamics of a population of bacilliform bacteria. We propose an innovative approach to frame-sequence tracking of deformable-cell motion by the automated minimization of a new, specific cost functional. This minimization is implemented by dedicated Boltzmann machines (stochastic recurrent neural networks). Automated detection of cell divisions is handled similarly by successive minimizations of two cost functions, alternating the identification of children pairs and parent identification. We validate the proposed automatic cell tracking algorithm using (i) recordings of simulated cell colonies that closely mimic the growth dynamics of E. coli in microfluidic traps and (ii) real data. On a batch of 1100 simulated image frames, cell registration accuracies per frame ranged from 94.5% to 100%, with a high average. Our initial tests using experimental image sequences (i.e., real data) of E. coli colonies also yield convincing results, with a registration accuracy ranging from 90% to 100%.
    Free, publicly-accessible full text available April 1, 2023
  2. Coelho, Luis Pedro (Ed.)
    Improvements in microscopy software and hardware have dramatically increased the pace of image acquisition, making analysis a major bottleneck in generating quantitative, single-cell data. Although tools for segmenting and tracking bacteria within time-lapse images exist, most require human input, are specialized to the experimental set up, or lack accuracy. Here, we introduce DeLTA 2.0, a purely Python workflow that can rapidly and accurately analyze images of single cells on two-dimensional surfaces to quantify gene expression and cell growth. The algorithm uses deep convolutional neural networks to extract single-cell information from time-lapse images, requiring no human input after training. DeLTA 2.0 retains all the functionality of the original version, which was optimized for bacteria growing in the mother machine microfluidic device, but extends results to two-dimensional growth environments. Two-dimensional environments represent an important class of data because they are more straightforward to implement experimentally, they offer the potential for studies using co-cultures of cells, and they can be used to quantify spatial effects and multi-generational phenomena. However, segmentation and tracking are significantly more challenging tasks in two-dimensions due to exponential increases in the number of cells. To showcase this new functionality, we analyze mixed populations of antibiotic resistant and susceptible cells,more »and also track pole age and growth rate across generations. In addition to the two-dimensional capabilities, we also introduce several major improvements to the code that increase accessibility, including the ability to accept many standard microscopy file formats as inputs and the introduction of a Google Colab notebook so users can try the software without installing the code on their local machine. DeLTA 2.0 is rapid, with run times of less than 10 minutes for complete movies with hundreds of cells, and is highly accurate, with error rates around 1%, making it a powerful tool for analyzing time-lapse microscopy data.« less
    Free, publicly-accessible full text available January 18, 2023
  3. Abstract

    As synthetic biocircuits become more complex, distributing computations within multi-strain microbial consortia becomes increasingly beneficial. However, designing distributed circuits that respond predictably to variation in consortium composition remains a challenge. Here we develop a two-strain gene circuit that senses and responds to which strain is in the majority. This involves a co-repressive system in which each strain produces a signaling molecule that signals the other strain to down-regulate production of its own, orthogonal signaling molecule. This co-repressive consortium links gene expression to ratio of the strains rather than population size. Further, we control the cross-over point for majority via external induction. We elucidate the mechanisms driving these dynamics by developing a mathematical model that captures consortia response as strain fractions and external induction are varied. These results show that simple gene circuits can be used within multicellular synthetic systems to sense and respond to the state of the population.