- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Aganezov, S (1)
-
Alonge, M (1)
-
Alonge, M. (1)
-
Hutton, S. (1)
-
Jiménez-Gómez, J.M. (1)
-
Kirsche, M (1)
-
Lebeigle, L (1)
-
Lemmon, Z. (1)
-
Lippman, Z.B. (1)
-
Lippman, ZB (1)
-
Schatz, M. (1)
-
Schatz, MC (1)
-
Sedlazeck, F.J. (1)
-
Soyk, S (1)
-
Soyk, S. (1)
-
Van Eck, J. (1)
-
Wang, X (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Soyk, S.; Lemmon, Z.; Sedlazeck, F.J.; Jiménez-Gómez, J.M.; Alonge, M.; Hutton, S.; Van Eck, J.; Schatz, M.; Lippman, Z.B. (, Nature plants)Genome editing technologies are being widely adopted in plant breeding. However, a looming challenge of engineering desirable genetic variation in diverse genotypes is poor predictability of phenotypic outcomes due to unforeseen interactions with pre-existing cryptic mutations. In tomato, breeding with a classical MADS-box gene mutation that improves harvesting by eliminating fruit stem abscission frequently results in excessive inflorescence branching, flowering and reduced fertility due to interaction with a cryptic variant that causes partial mis-splicing in a homologous gene. Here, we show that a recently evolved tandem duplication carrying the second-site variant achieves a threshold of functional transcripts to suppress branching, enabling breeders to neutralize negative epistasis on yield. By dissecting the dosage mechanisms by which this structural variant restored normal flowering and fertility, we devised strategies that use CRISPR-Cas9 genome editing to predictably improve harvesting. Our findings highlight the under-appreciated impact of epistasis in targeted trait breeding and underscore the need for a deeper characterization of cryptic variation to enable the full potential of genome editing in agriculture.more » « less
An official website of the United States government
