skip to main content


Search for: All records

Creators/Authors contains: "Alonso, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2024
  2. Free, publicly-accessible full text available November 1, 2024
  3. Free, publicly-accessible full text available November 1, 2024
  4. Free, publicly-accessible full text available November 1, 2024
  5. Free, publicly-accessible full text available October 1, 2024
  6. Abstract

    The mass of the top quark is measured in 36.3$$\,\text {fb}^{-1}$$fb-1of LHC proton–proton collision data collected with the CMS detector at$$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$s=13TeV. The measurement uses a sample of top quark pair candidate events containing one isolated electron or muon and at least four jets in the final state. For each event, the mass is reconstructed from a kinematic fit of the decay products to a top quark pair hypothesis. A profile likelihood method is applied using up to four observables per event to extract the top quark mass. The top quark mass is measured to be$$171.77\pm 0.37\,\text {Ge}\hspace{-.08em}\text {V} $$171.77±0.37GeV. This approach significantly improves the precision over previous measurements.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  7. A<sc>bstract</sc>

    The second-order (v2) and third-order (v3) Fourier coefficients describing the azimuthal anisotropy of prompt and nonprompt (from b-hadron decays) J/ψ, as well as prompt ψ(2S) mesons are measured in lead-lead collisions at a center-of-mass energy per nucleon pair of$$ \sqrt{s_{\textrm{NN}}} $$sNN= 5.02 TeV. The analysis uses a data set corresponding to an integrated luminosity of 1.61 nb1recorded with the CMS detector. The J/ψ and ψ(2S) mesons are reconstructed using their dimuon decay channel. Thev2andv3coefficients are extracted using the scalar product method and studied as functions of meson transverse momentum and collision centrality. The measuredv2values for prompt J/ψ mesons are found to be larger than those for nonprompt J/ψ mesons. The prompt J/ψv2values at highpTare found to be underpredicted by a model incorporating only parton energy loss effects in a quark-gluon plasma medium. Prompt and nonprompt J/ψ mesonv3and prompt ψ(2S)v2andv3values are also reported for the first time, providing new information about heavy quark interactions in the hot and dense medium created in heavy ion collisions.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  8. Abstract

    A search for decays to invisible particles of Higgs bosons produced in association with a top-antitop quark pair or a vector boson, which both decay to a fully hadronic final state, has been performed using proton-proton collision data collected at$${\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V}}$$s=13TeVby the CMS experiment at the LHC, corresponding to an integrated luminosity of 138$$\,\text {fb}^{-1}$$fb-1. The 95% confidence level upper limit set on the branching fraction of the 125$$\,\text {Ge}\hspace{-.08em}\text {V}$$GeVHiggs boson to invisible particles,$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$B(Hinv), is 0.54 (0.39 expected), assuming standard model production cross sections. The results of this analysis are combined with previous$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$B(Hinv)searches carried out at$${\sqrt{s}=7}$$s=7, 8, and 13$$\,\text {Te}\hspace{-.08em}\text {V}$$TeVin complementary production modes. The combined upper limit at 95% confidence level on$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$B(Hinv)is 0.15 (0.08 expected).

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024