Successful reproduction is critical to the growth and persistence of marine fish populations, yet how changes in the environment influence reproduction remains largely unknown. We explored how shifting ocean conditions influenced larval production in four species of long-lived, live-bearing rockfish (Sebastes spp.) in the California Current. Brood fecundity, body size, and environmental information were analyzed from the mid-1980s through 2020. Interannual variation in brood fecundity was greater than 50% in the single-brooding yellowtail rockfish (S. flavidus) and widow rockfish (S. entomelas). Brood fecundity varied less in chilipepper (S. goodei) and bocaccio (S. paucispinis), two species capable of multiple broods per year. In these two species, interannual fecundity variability is more likely to depend on the number of broods produced than on brood size alone. In all four species, brood fecundity was positively correlated with maternal length and body condition. Variable ocean conditions influenced the strength of maternal size effects by year. These results provide evidence for reproductive plasticity and environmental effects on fecundity, with implications for changes in population reproductive potential with climate change.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2025
-
Abstract In contrast to sexual selection on traits that affect interactions between the sexes before mating, little theoretical research has focused on the coevolution of postmating traits via cryptic female choice (when females bias fertilization toward specific males). We used simulation models to ask (a) whether and, if so, how nondirectional cryptic female choice (female-by-male interactions in fertilization success) causes deviations from models that focus exclusively on male-mediated postmating processes, and (b) how the risk of sperm competition, the strength of cryptic female choice, and tradeoffs between sperm number and sperm traits interact to influence the coevolutionary dynamics between cryptic female choice and sperm traits. We found that incorporating cryptic female choice can result in males investing much less in their ejaculates than predicted by models with sperm competition only. We also found that cryptic female choice resulted in the evolution of genetic correlations between cryptic female choice and sperm traits, even when the strength of cryptic female choice was weak, and the risk of sperm competition was low. This suggests that cryptic female choice may be important even in systems with low multiple mating. These genetic correlations increased with the risk of sperm competition and as the strength of cryptic female choice increased. When the strength of cryptic female choice and risk of sperm competition was high, extreme codivergence of sperm traits and cryptic female choice preference occurred even when the sperm trait traded off with sperm number. We also found that male traits lagged behind the evolution of female traits; this lag decreased with increasing strength of cryptic female choice and risk of sperm competition. Overall, our results suggest that cryptic female choice deserves more attention theoretically and may be driving trait evolution in ways just beginning to be explored.
-
Sexual selection is a powerful force shaping not only the details but also the breadth of what we see in nature. Yet so much unexplained variation remains. Organisms often solve the “problem” of how to pass on their genes in ways that do not fit our current expectations. I argue here that integrating empirical surprises will push our understanding of sexual selection forward. Such “nonmodel” organisms (i.e., species that do not do what we think they should do) challenge us to think deeply, integrate puzzling results, question our assumptions, and consider the new (and arguably better) questions these unexpected patterns pose. In this article, I share how puzzling observations from my long-term research on the ocellated wrasse (Symphodus ocellatus) have shaped my understanding of sexual selection and suggested new questions about the interplay among sexual selection, plasticity, and social interactions. My general premise, however, is not that others should study these questions. Instead, I argue for a change in the culture of our field—to consider unexpected results a welcome opportunity to generate new questions and learn new things about sexual selection. Those of us in positions of power (e.g., as editors, reviewers, and authors) need to lead the way.more » « less
-
Sexual selection is a powerful diversifier of phenotype, behavior and cognition. Here we compare cognitive-behavioral traits across four reproductive phenotypes (females and three alternative males) of wild-caught ocellated wrasse ( Symphodus ocellatus ). Both sex and alternative male phenotypes are environmentally determined with sex determination occuring within the first year, and males transition between alternative phenotypes across 2 years (sneaker to satellite or satellite to nesting). We captured 151 ocellated wrasse and tested them on different behavior and cognition assays (scototaxis, shoaling, and two detour-reaching tasks). We found greater divergence across alternative male reproductive phenotypes than differences between the sexes in behavior, problem-solving, and relationships between these traits. Nesting males were significantly less bold than others, while sneaker males were faster problem-solvers and the only phenotype to display a cognitive-behavioral syndrome (significant correlation between boldness and problem-solving speed). Combining these results with prior measurements of sex steroid and stress hormone across males, suggests that nesting and sneaker males represent different coping styles. Our data suggests that transitioning between alternative male phenotypes requires more than changes in physiology (size and ornamentation) and mating tactic (sneaking vs. cooperation), but also involves significant shifts in cognitive-behavioral and coping style plasticity.more » « less
-
Sexual selection arising from sperm competition has driven the evolution of immense variation in ejaculate allocation and sperm characteristics not only among species, but also among males within a species. One question that has received little attention is how cooperation among males affects these patterns. Here we ask how male alternative reproductive types differ in testes size, ejaculate production, and sperm morphology in the ocellated wrasse, a marine fish in which unrelated males cooperate and compete during reproduction. Nesting males build nests, court females and provide care. Sneaker males only “sneak” spawn, while satellite males sneak, but also help by chasing away sneakers. We found that satellite males have larger absolute testes than either sneakers or nesting males, despite their cooperative role. Nesting males invested relatively less in testes than either sneakers or satellites. Though sneakers produced smaller ejaculates than either satellite or nesting males, we found no difference among male types in either sperm cell concentration or sperm number, implying sneakers may produce less seminal fluid. Sperm tail length did not differ significantly among male types, but sneaker sperm cells had significantly larger heads than either satellite or nesting male sperm, consistent with past research showing sneakers produce slower sperm. Our results highlight that social interactions among males can influence sperm and ejaculate production.more » « less
-
null (Ed.)Males that exhibit alternative reproductive tactics (ARTs) often differ in the risk of sperm competition and the energetic trade-offs they experience. The resulting patterns of selection could lead to between-tactic differences in ejaculate traits. Despite extensive research on male ARTs, there is no comprehensive review of whether and what differences in sperm traits exist between male ARTs. We review existing theory on ejaculate evolution relevant to ARTs and then conduct a comprehensive vote-counting review of the empirical data comparing sperm traits between males adopting ARTs. Despite the general expectation that sneaker males should produce sperm that are more competitive (e.g. higher quality or performance), we find that existing theory does not predict explicitly how males adopting ARTs should differ in sperm traits. The majority of studies find no significant difference in sperm performance traits between dominant and sneaker males. However, when there is a difference, sneaker males tend to have higher sperm performance trait values than dominant males. We propose ways that future theoretical and empirical research can improve our understanding of the evolution of ejaculate traits in ARTs. We then highlight how studying ejaculate traits in species with ARTs will improve our broader knowledge of ejaculate evolution. This article is part of the theme issue ‘Fifty years of sperm competition’.more » « less
-
Smiseth, Per (Ed.)Abstract Asymmetries in power (the ability to influence the outcome of conflict) are ubiquitous in social interactions because interacting individuals are rarely identical. It is well documented that asymmetries in power influence the outcome of reproductive conflict in social groups. Yet power asymmetries have received little attention in the context of negotiations between caring parents, which is surprising given that parents are often markedly different in size. Here we built on an existing negotiation model to examine how power and punishment influence negotiations over care. We incorporated power asymmetry by allowing the more-powerful parent, rank 1, to inflict punishment on the less-powerful parent, rank 2. We then determined when punishment will be favored by selection and how it would affect the negotiated behavioral response of each parent. We found that with power and punishment, a reduction in one parent’s effort results in partial compensation by the other parent. However, the degree of compensation is asymmetric: the rank 2 compensates more than the rank 1. As a result, the fitness of rank 1 increases and the fitness of rank 2 decreases, relative to the original negotiation model. Furthermore, because power and punishment enable one parent to extract greater effort from the other, offspring can do better, that is, receive more total effort, when there is power and punishment involved in negotiations over care. These results reveal how power and punishment alter the outcome of conflict between parents and affect offspring, providing insights into the evolutionary consequences of exerting power in negotiations.more » « less