skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Alshahrani, Thamraa_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The design and synthesis of polyhedra using coordination‐driven self‐assembly has been an intriguing research area for synthetic chemists. Metal‐organic polyhedra are a class of intricate molecular architectures that have garnered significant attention in the literature due to their diverse structures and potential applications. Hereby, we reportCu‐MOP, a bifunctional metal‐organic cuboctahedra built using 2,6‐dimethylpyridine‐3,5‐dicarboxylic acid and copper acetate at room temperature. The presence of both Lewis basic pyridine groups and Lewis acidic copper sites imparts catalytic activity to Cu‐MOP for the tandem one‐pot deacetalization‐Knoevenagel/Henry reactions. The effect of solvent system and time duration on the yields of the reactions was studied, and the results illustrate the promising potential of these metal‐organic cuboctahedra, also known as nanoballs for applications in catalysis. 
    more » « less