skip to main content

Search for: All records

Creators/Authors contains: "Alt, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    In a magnetized, collisionless plasma, the magnetic moment of the constituent particles is an adiabatic invariant. An increase in the magnetic-field strength in such a plasma thus leads to an increase in the thermal pressure perpendicular to the field lines. Above a $\unicode[STIX]{x1D6FD}$ -dependent threshold (where $\unicode[STIX]{x1D6FD}$ is the ratio of thermal to magnetic pressure), this pressure anisotropy drives the mirror instability, producing strong distortions in the field lines on ion-Larmor scales. The impact of this instability on magnetic reconnection is investigated using a simple analytical model for the formation of a current sheet (CS) and the associated production of pressure anisotropy. The difficulty in maintaining an isotropic, Maxwellian particle distribution during the formation and subsequent thinning of a CS in a collisionless plasma, coupled with the low threshold for the mirror instability in a high- $\unicode[STIX]{x1D6FD}$ plasma, imply that the geometry of reconnecting magnetic fields can differ radically from the standard Harris-sheet profile often used in simulations of collisionless reconnection. As a result, depending on the rate of CS formation and the initial CS thickness, tearing modes whose growth rates and wavenumbers are boosted by this difference may disrupt the mirror-infested CS before standard tearing modes can develop. A quantitative theory is developed to illustrate this process, which may find application in the tearing-mediated disruption of kinetic magnetorotational ‘channel’ modes. 
    more » « less
  2. Abstract

    Generation and propagation of lower hybrid drift wave (LHDW) near the electron diffusion region (EDR) during guide field reconnection at the magnetopause is studied with data from the Magnetospheric Multiscale mission and a theoretical model. Inside the current sheet, the electron beta (βe) determines which type of LHDW is excited. Inside the EDR, where the electron beta is high (βe ∼ 5), the long‐wavelength electromagnetic LHDW is observed propagating obliquely to the local magnetic field. In contrast, the short‐wavelength electrostatic LHDW, propagating nearly perpendicular to the magnetic field, is observed slightly away from the EDR, whereβeis small (0.6). These observed LHDW features are explained by a local theoretical model, including effects from the electron temperature anisotropy, finite electron heat flux, electrostatics, and parallel current. The short‐wavelength LHDW is capable of generating significant drag force between electrons and ions.

    more » « less