- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Haynes, Christy L. (2)
-
Alvarez Reyes, Wilanyi R. (1)
-
Alvarez-Reyes, Wilanyi (1)
-
Deng, Chaoyi (1)
-
He, Jiayi (1)
-
Huang, Cheng-Hsin (1)
-
Hudson-Smith, Natalie V. (1)
-
Krause, Miriam O. (1)
-
Matar Abed, Mahmoud (1)
-
Mitchell, Stephanie (1)
-
Mohamud, Sharmaka (1)
-
O’Keefe, Tana L. (1)
-
Rodriguez, Rebeca Sarahi (1)
-
Spanolios, Eleni (1)
-
Torres-Gómez, Andres (1)
-
Tuga, Beza (1)
-
Wang, Yi (1)
-
White, Jason C. (1)
-
Yao, Xiaoxiao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
There is a need to develop new and sustainable agricultural technologies to help provide global food security, and nanoscale materials show promising results in this area. In this study, mesoporous silica nanoparticles (MSNs) and chitosan-coated mesoporous silica nanoparticles (CTS-MSNs) were synthesized and applied to soybeans (Glycine max) by two different strategies in greenhouse and field studies to study the role of dissolved silicic acid and chitosan in enhancing plant growth and suppressing disease damage caused by Fusarium virguliforme. Plant growth and health were assessed by measuring the soybean biomass and chlorophyll content in both healthy and Fusarium-infected plants at harvest. In the greenhouse study, foliar and seed applications with 250 mg/L nanoparticle treatments were compared. A single seed treatment of MSNs reduced disease severity by 30% and increased chlorophyll content in both healthy and infected plants by 12%. Based on greenhouse results, seed application was used in the follow-up field study and MSNs and CTS-MSNs reduced disease progression by 12 and 15%, respectively. A significant 32% increase was observed for chlorophyll content for plants treated with CTS-MSNs. Perhaps most importantly, nanoscale silica seed treatment significantly increased (23–68%) the micronutrient (Zn, Mn, Mg, K, B) content of soybean pods, suggesting a potential sustainable strategy for nano-enabled biofortification to address nutrition insecurity. Overall, these findings indicate that MSN and CTS-MSN seed treatments in soybeans enable disease suppression and increase plant health as part of a nano-enabled strategy for sustainable agriculture.more » « less
-
Hudson-Smith, Natalie V.; Alvarez-Reyes, Wilanyi; Yao, Xiaoxiao; He, Jiayi; Rodriguez, Rebeca Sarahi; Mitchell, Stephanie; Matar Abed, Mahmoud; Spanolios, Eleni; Krause, Miriam O.; Haynes, Christy L. (, Journal of Chemical Education)Video games and immersive, narrative experiences are often called upon to help students understand difficult scientific concepts, such as sense of scale. However, the development of educational video games requires expertise and, frequently, a sizable budget. Here, we report on the use of an interactive text-style video game, NanoAdventure, to communicate about sense of scale and nanotechnology to the public. NanoAdventure was developed on an open-source, free-to-use platform with simple coding and enhanced with free or low-cost assets. NanoAdventure was launched in three languages (English, Spanish, Chinese) and compared to textbook-style and blog-style control texts in a randomized study. Participants answered questions on their knowledge of nanotechnology and their attitudes toward nanotechnology before and after reading one randomly assigned text (textbook, blog, or NanoAdventure game). Our results demonstrate that interactive fiction is effective in communicating about sense of scale and nanotechnology as well as the relevance of nanotechnology to a general public. NanoAdventure was found to be the most “fun” and easy to read of all text styles by participants in a randomized trial. Here, we make the case for interactive “Choose Your Own Adventure” style games as another effective tool among educational game models for chemistry and science communication.more » « less
An official website of the United States government
