skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Alves, Anthony V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Fluorinated surfactants, which fall under the class of per- and polyfluoroalkyl substances (PFAS), are amphiphilic molecules that comprise hydrophobic fluorocarbon chains and hydrophilic head-groups. Fluorinated surfactants have been utilized in many applications, e.g., fire-fighting foams, paints, household/kitchenware items, product packaging, and fabrics. These compounds then made their way into the environment, and have been detected in soil, fresh water, and seawater. From there, they can enter human bodies. Fluorinated surfactants are persistent in water and soil environments, and their adsorption onto mineral surfaces contributes to this persistence. This review examines how fluorinated surfactants adsorb onto mineral surfaces, by analyzing the thermodynamics and kinetics of adsorption, and the underlying mechanisms. Adsorption of fluorinated surfactants onto mineral surfaces can be explained by electrostatic interactions, hydrophobic interactions, hydrogen bonding, and ligand and ion exchange. The aqueous pH, varying salt or humic acid concentrations, and the surfactant chemistry can influence the adsorption of fluorinated surfactants onto mineral surfaces. Further research is needed on fluorinated surfactant adsorbent materials to treat drinking water, and on strategies that can modulate the fate of these compounds in specific environmental locations. 
    more » « less