Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Lithium metal batteries promise higher energy densities than current lithium-ion batteries but require novel electrolytes to extend their cycle life. Fluorinated solvents help stabilize the solid electrolyte interphase (SEI) with lithium metal, but are believed to have weaker solvation ability compared to their nonfluorinated counterparts and are deemed ‘poorer electrolytes’. In this work, we synthesize tris(2-fluoroethyl) borate (TFEB) as a new fluorinated borate ester solvent and show that TFEB unexpectedly has higher lithium salt solubility than its nonfluorinated counterpart (triethyl borate). Through experiments and simulations, we show that the partially fluorinated –CH2F group acts as the primary coordination site that promotes lithium salt dissolution. TFEB electrolyte has a higher lithium transference number and better rate capability compared to methoxy polyethyleneglycol borate esters reported in the literature. In addition, TFEB supports compact lithium deposition morphology, high lithium metal Coulombic efficiency, and stable cycling of lithium metal/LiFePO4 cells. This work ushers in a new electrolyte design paradigm where partially fluorinated moieties enable salt dissolution and can serve as primary ion coordination sites for next-generation electrolytes.more » « lessFree, publicly-accessible full text available January 23, 2025
-
Hybrid sulfide-polymer composite electrolytes are promising candidates to enable lithium metal batteries because of their high ionic conductivity and flexibility. These composite materials are primarily prepared through solution casting methods to obtain a homogenous distribution of polymer within the inorganic. However, little is known about the influence of the morphology of the polymer and the inorganic on the ionic conductivity and electrochemical behavior of these hybrid systems. In this study, we assess the impact of processing methodology, either solution processing or solvent-free ball milling, on overall performance of hybrid electrolytes containing amorphous Li3PS4(LPS) and non-reactive polyethylene (PE). We demonstrate that using even non-polar, non-reactive solvents can alter the LPS crystalline structure, leading to a lower ionic conductivity. Additionally, we show that ball milling leads to a non-homogenous distribution of polymer within the inorganic, which leads to a higher ionic conductivity than samples processed via solution casting. Our work demonstrates that the morphology of the polymer and the sulfide plays a key role in the ionic conductivity and subsequent electrochemical stability of these hybrid electrolytes.
-
Fluoroether solvents are promising electrolyte candidates for high-energy-density lithium metal batteries, where high ionic conductivity and oxidative stability are important metrics for design of new systems. Recent experiments have shown that these performance metrics, particularly stability, can be tuned by changing the fraction of ether and fluorine content. However, little is known about how different molecular architectures influence the underlying ion transport mechanisms and conductivity. Here, we use all-atom molecular dynamics simulations to elucidate the ion transport and solvation characteristics of fluoroether chains of varying length, and having different ether segment and fluorine terminal group contents. The design rules that emerge from this effort are that solvent size determines lithium-ion transport kinetics, solvation structure, and solvation energy. In particular, the mechanism for lithium-ion transport is found to shift from ion hopping between solvation sites located in different fluoroether chains in short-chain solvents, to ion–solvent co-diffusion in long-chain solvents, indicating that an optimum exists for molecules of intermediate length, where hopping is possible but solvent diffusion is fast. Consistent with these findings, our experimental measurements reveal a non-monotonic behavior of the effects of solvent size on lithium-ion conductivity, with a maximum occurring for medium-length solvent chains. A key design principle for achieving high ionic conductivity is that a trade-off is required between relying on shorter fluoroether chains having high self-diffusivity, and relying on longer chains that increase the stability of local solvation shells.more » « less
-
Carbonate-based electrolytes are widely used in Li-ion batteries but are limited by a small operating temperature window and poor cycling with silicon-containing graphitic anodes. The lack of non-carbonate electrolyte alternatives such as ether-based electrolytes is due to undesired solvent co-intercalation that occurs with graphitic anodes. Here, we show that fluoroethers are the first class of ether solvents to intrinsically support reversible lithium-ion intercalation into graphite without solvent co-intercalation at conventional salt concentrations. In full cells using a graphite anode, they enable 10-fold higher energy densities compared to conventional ethers, and better thermal stability over carbonate electrolytes (operation up to 60 °C) by producing a robust solvent-derived solid electrolyte interphase (SEI). As single-solvent–single-salt electrolytes, they remarkably outperform carbonate electrolytes with fluoroethylene carbonate (FEC) and vinylene carbonate (VC) additives when cycled with graphite–silicon composite anodes. Our molecular design strategy opens a new class of electrolytes that can enable next generation Li-ion batteries with higher energy density and a wider working temperature window.more » « less
-
Amorphous Li 3 PS 4 (LPS) solid-state electrolytes are promising for energy-dense lithium metal batteries. LPS glass, synthesized from a 3 : 1 mol ratio of Li 2 S and P 2 S 5 , has high ionic conductivity and can be synthesized by ball milling or solution processing. Ball milling has been attractive because it provides the easiest route to access amorphous LPS with a conductivity of 3.5 × 10 −4 S cm −1 (20 °C). However, achieving the complete reaction of precursors via ball milling can be difficult, and most literature reports use X-ray diffraction (XRD) or Raman spectroscopy to confirm sample purity, both of which have limitations. Furthermore, the effect of residual precursors on ionic conductivity and lithium metal cycling is unknown. In this work, we illustrate the importance of multimodal characterization to determine LPS phase and chemical purity. To determine the residual Li 2 S content in LPS, we show that (1) XRD and 31 P solid state nuclear magnetic resonance (ssNMR) are insufficient and (2) Raman loses sensitivity at concentrations below 12 mol% Li 2 S. Most importantly, we show that 7 Li ssNMR is highly sensitive. Using 7 Li ssNMR, we investigate the effect of ball milling parameters and develop a robust and highly reproducible procedure for pure LPS synthesis. We find that as the residual Li 2 S precursor content increases, LPS conductivity decreases and lithium metal batteries exhibit higher overpotentials and poor cycle life. Our work reveals the importance of multimodal characterization techniques for amorphous solid-state electrolyte characterization and will enable better synthetic strategies for highly conductive electrolytes for efficient energy-dense solid-state lithium metal batteries.more » « less
-
Ion Conducting Polymer Interfaces for Lithium Metal Anodes: Impact on the Electrodeposition Kinetics
Abstract Electrochemical cells that utilize metals (e.g., lithium, sodium, zinc) as anodes are under intense investigation as they are projected to replace the current lithium‐ion batteries to serve as a more energy‐dense option for commercial applications. In addition, metal electrodes provide opportunities for fundamental research of different phenomena, such as ion transport and electrochemical kinetics, in the complex environment of reactive metal‐electrodeposition. In this work, computationally and experimentally the competing effects related to transport and kinetics during the metal electrodeposition process are examined. Using Brownian dynamics simulations, it is shown that slower deposition kinetics results in a more compact and uniform Li morphology. This finding is experimentally implemented by designing ion‐containing polymeric coatings on the electrodes that simultaneously provide pathways for lithium‐ion transport, while impeding the charge transfer (Li++ e−→ Li) at heterogeneous surfaces. It is further shown that these ionic polymer interfaces can significantly extend the cell‐lifetime of a lithium metal battery in both ether‐based and carbonate‐based electrolytes. Through theoretical and experimental investigations, it is found that a low kinetic to transport rate ratio is a major factor in influencing the Li plating morphology. The plating morphology can be further fine‐tuned by increasing ionic conductivity.