skip to main content

Search for: All records

Creators/Authors contains: "Ambrose, D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present an efficient, accurate computational method for a coordinate-free model of flame front propagation of Frankel and Sivashinsky. This model allows for overturned flames fronts, in contrast to weakly nonlinear models such as the Kuramoto–Sivashinsky equation. The numerical procedure adapts the method of Hou, Lowengrub and Shelley, derived for vortex sheets, to this model. The result is a nonstiff, highly accurate solver which can handle fully nonlinear, overturned interfaces, with similar computational expense to methods for weakly nonlinear models. We apply this solver both to simulate overturned flame fronts and to compare the accuracy of Kuramoto–Sivashinsky and coordinate-free models in the appropriate limit.