Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Stimuli-responsive materials that exhibit a mechanical response to specific biological conditions are of considerable interest for responsive, implantable medical devices. Herein, we report the synthesis, processing and characterization of oxidation-responsive liquid crystal elastomers that demonstrate programmable shape changes in response to reactive oxygen species. Direct ink writing (DIW) is used to fabricate Liquid Crystal Elastomers (LCEs) with programmed molecular orientation and anisotropic mechanical properties. LCE structures were immersed in different media (oxidative, basic and saline) at body temperature to measure in vitro degradation. Oxidation-sensitive hydrophobic thioether linkages transition to hydrophilic sulfoxide and sulfone groups. The introduction of these polar moieties brings about anisotropic swelling of the polymer network in an aqueous environment, inducing complex shape changes. 3D-printed uniaxial strips exhibit 8% contraction along the nematic director and 16% orthogonal expansion in oxidative media, while printed LCEs azimuthally deform into cones 19 times their original thickness. Ultimately, these LCEs degrade completely. In contrast, LCEs subjected to basic and saline solutions showed no apparent response. These oxidation-responsive LCEs with programmable shape changes may enable a wide range of applications in target specific drug delivery systems and other diagnostic and therapeutic tools.more » « less
-
Abstract Shape‐switching behavior, where a transient stimulus induces an indefinitely stable deformation that can be recovered on exposure to another transient stimulus, is critical to building smart structures from responsive polymers as continue power is not needed to maintain deformations. Herein, we 4D‐print shape‐switching liquid crystalline elastomers (LCEs) functionalized with supramolecular crosslinks, dynamic covalent crosslinks, and azobenzene. The salient property of shape‐switching LCEs is that light induces long‐lived, deformation that can be recovered on‐demand by heating. UV‐light isomerizes azobenzene from
trans tocis , and temporarily breaks the supramolecular crosslinks, resulting in a programmed deformation. After UV, the shape‐switching LCEs fix more than 90 % of the deformation over 3 days by the reformed supramolecular crosslinks. Using the shape‐switching properties, we print Braille‐like actuators that can be photoswitched to display different letters. This new class of photoswitchable actuators may impact applications such as deployable devices where continuous application of power is impractical.