skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Amendola, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The investigation aimed to determine whether altering metal microstructure by introducing special grain boundaries through annealing could reduce the corrosion damage observed in the presence of pyruvate. Oxygen-free pure copper coupons were annealed at 325°C, 475°C and 950°C for varying durations to optimize the formation of ∑3 special boundaries. Samples annealed at 475°C for 30 min had the highest yield of such boundaries, thus, were selected for testing. Annealed and as-received, untreated, copper specimens were exposed under stagnant conditions to an aqueous oxic solution of sodium pyruvate for 30 days. Microscopy, spectroscopy, and electrochemical methods were employed to characterize the specimens prior to and following pyruvate exposure. Pyruvate caused localized corrosion of copper seen as micro pitting, irrespective of the specimen treatment. Reduced pitting severity and a decrease in the corrosion rate by 32 % were recorded for annealed coupons when compared to as-received ones. It is proposed that the difference in thickness and morphology of the oxide layer between annealed and as-received coupons, evidenced through electrochemical techniques, is the likely contributor to the improved corrosion resistance of annealed coupons. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026