skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Amine, Khalil"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A lithium-air battery based on lithium oxide (Li2O) formation can theoretically deliver an energy density that is comparable to that of gasoline. Lithium oxide formation involves a four-electron reaction that is more difficult to achieve than the one- and two-electron reaction processes that result in lithium superoxide (LiO2) and lithium peroxide (Li2O2), respectively. By using a composite polymer electrolyte based on Li10GeP2S12nanoparticles embedded in a modified polyethylene oxide polymer matrix, we found that Li2O is the main product in a room temperature solid-state lithium-air battery. The battery is rechargeable for 1000 cycles with a low polarization gap and can operate at high rates. The four-electron reaction is enabled by a mixed ion–electron-conducting discharge product and its interface with air. 
    more » « less
  2. null (Ed.)
  3. Abstract Electrocatalytic nanocarbon (EN) is a class of material receiving intense interest as a potential replacement for expensive, metal-based electrocatalysts for energy conversion and chemical production applications. The further development of EN will require an intricate knowledge of its catalytic behaviors, however, the true nature of their electrocatalytic activity remains elusive. This review highlights work that contributed valuable knowledge in the elucidation of EN catalytic mechanisms. Experimental evidence from spectroscopic studies and well-defined molecular models, along with the survey of computational studies, is summarized to document our current mechanistic understanding of EN-catalyzed oxygen, carbon dioxide and nitrogen electrochemistry. We hope this review will inspire future development of synthetic methods and in situ spectroscopic tools to make and study well-defined EN structures. 
    more » « less
  4. null (Ed.)
  5. Sodium‐on batteries (SIBs) are promising alternatives to lithium‐ion batteries (LIBs) because of the low cost, abundance, and high sustainability of sodium resources. Analogous to LIBs, the high‐capacity electrodes in SIBs always suffer from rapid capacity decay upon long‐term cycling due to the particle pulverization induced by a large volume change. Circumventing particle pulverization plays a critical role in developing high‐energy and long‐life SIBs. Herein, tetrahydroxy‐1,4‐benzoquinone disodium salt (TBDS) that can self‐heal the cracks by hydrogen bonding between hydroxyl group and carbonyl group is employed as a cathode for sustainable and stable SIBs. The self‐healing TBDS exhibits long cycle life of 1000 cycles with a high rate capability up to 2 A g−1due to the fast Na‐ion diffusion reaction in the TBDS cathode. The intermolecular hydrogen bonding has been comprehensively characterized to understand the self‐healing mechanism. The hydrogen bonding‐enabled self‐healing organic materials are promising for developing high‐energy and long‐cycle‐life SIBs. 
    more » « less