- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
10
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Aminollah Khormali, Ahmed Abusnaina (1)
-
#Tyler Phillips, Kenneth E. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
& Babbitt, W. (0)
-
& Baek, Y. (0)
-
& Bahabry, Ahmed. (0)
-
& Bai, F. (0)
-
& Balasubramanian, R. (0)
-
& Barth-Cohen, L. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
2022 USENIX Annual Technical Conference (0)
-
:Chaosong Huang, Gang Lu (0)
-
A. Agarwal (0)
-
A. Beygelzimer (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Despite many attempts, the state-of-the-art of adversarial machine learning on malware detection systems generally yield unexecutable samples. In this work, we set out to examine the robustness of visualization-based malware detection system against adversarial examples (AEs) that not only are able to fool the model, but also maintain the executability of the original input. As such, we first investigate the application of existing off-the-shelf adversarial attack approaches on malware detection systems through which we found that those approaches do not necessarily maintain the functionality of the original inputs. Therefore, we proposed an approach to generate adversarial examples, COPYCAT, which is specifically designed for malware detection systems considering two main goals; achieving a high misclassification rate and maintaining the executability and functionality of the original input. We designed two main configurations for COPYCAT, namely AE padding and sample injection. While the first configuration results in untargeted misclassification attacks, the sample injection configuration is able to force the model to generate a targeted output, which is highly desirable in the malware attribution setting. We evaluate the performance of COPYCAT through an extensive set of experiments on two malware datasets, and report that we were able to generate adversarial samples that are misclassifiedmore »