skip to main content

Search for: All records

Creators/Authors contains: "Amiri, Roohollah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we propose a generalized millimeter-Wave (mmWave) reconfigurable antenna multiple-input multiple-output (RA-MIMO) architecture that takes advantage of lens antennas. The considered antennas can generate multiple independent beams simultaneously using a single RF chain. This property, together with RA-MIMO, is used to combat small-scale fading and shadowing in mmWave bands. To this end, first, we derive a channel matrix for RA-MIMO. Then, we use rate-one space-time block codes (STBCs), together with phase-shifters at the receive reconfigurable antennas, to suppress the effect of small-scale fading. We consider two kinds of phase shifters: i) ideal which is error-free and ii) digitalmore »which adds quantization error. The goal of phase-shifters is to convert a complex-valued channel matrix into real-valued. Hence, it is possible to use rate-one STBCs for any dimension of RA-MIMO. We investigate diversity gain and derive an upper bound for symbol error rate in cases of ideal and digital phase-shifters. We show that RA-MIMO achieves the full-diversity gain with ideal phase-shifters and the full-diversity gain for digital phase-shifters when the number of quantization bits is higher than one. We investigate RA-MIMO in the presence of shadowing. Our analysis demonstrates that, by increasing the dimension of RA-MIMO, the outage probability decreases which means the effect of shadowing decreases. Numerical results verify our theoretical derivations.« less
  2. This paper proposes a new multiple access technique based on the millimeter wave lens-based reconfigurable antenna systems. In particular, to support a large number of groups of users with different angles of departures (AoDs), we integrate recently proposed reconfigurable antenna multiple access (RAMA) into non-orthogonal multiple access (NOMA). The proposed technique, named reconfigurable antenna NOMA (RA-NOMA), divides the users with respect to their AoDs and channel gains. Users with different AoDs and comparable channel gains are served via RAMA while users with the same AoDs but different channel gains are served via NOMA. This technique results in the independence ofmore »the number of radio frequency chains from the number of NOMA groups. Further, we derive the feasibility conditions and show that the power allocation for RA-NOMA is a convex problem. We then derive the maximum achievable sum-rate of RA-NOMA. Simulation results show that RA-NOMA outperforms conventional orthogonal multiple access (OMA) as well as the combination of RAMA with the OMA techniques.« less
  3. Low-density parity check (LDPC) codes have been extensively applied in mobile communication systems due to their excellent error correcting capabilities. However, their broad adoption has been hindered by the high complexity of the LDPC decoder. Although to date, dedicated hardware has been used to implement low latency LDPC decoders, recent advancements in the architecture of mobile processors have made it possible to develop software solutions. In this paper, we propose a multi-stream LDPC decoder designed for a mobile device. The proposed decoder uses graphics processing unit (GPU) of a mobile device to achieve efficient real-time decoding. The proposed solution ismore »implemented on an NVIDIA Tegra board as a system on a chip (SoC), where our results indicate that we can control the load on the central processing units through the multi-stream structure.« less
  4. Millimeter-wave (mmWave) communication is anticipated to provide significant throughout gains in urban scenarios. To this end, network densification is a necessity to meet the high traffic volume generated by smart phones, tablets, and sensory devices while overcoming large pathloss and high blockages at mmWaves frequencies. These denser networks are created with users deploying small mm Wave base stations (BSs) in a plug-and-play fashion. Although, this deployment method provides the required density, the amorphous deployment of BSs needs distributed management. To address this difficulty, we propose a self-organizing method to allocate power to mm Wave BSs in an ultra dense network.more »The proposed method consists of two parts: clustering using fast local clustering and power allocation via Q-learning. The important features of the proposed method are its scalability and self-organizing capabilities, which are both important features of 5G. Our simulations demonstrate that the introduced method, provides required quality of service (QoS) for all the users independent of the size of the network.« less
  5. There is an increase in usage of smaller cells or femtocells to improve performance and coverage of next-generation heterogeneous wireless networks (HetNets). However, the interference caused by femtocells to neighboring cells is a limiting performance factor in dense HetNets. This interference is being managed via distributed resource allocation methods. However, as the density of the network increases so does the complexity of such resource allocation methods. Yet, unplanned deployment of femtocells requires an adaptable and self-organizing algorithm to make HetNets viable. As such, we propose to use a machine learning approach based on Q-learning to solve the resource allocation problemmore »in such complex networks. By defining each base station as an agent, a cellular network is modeled as a multi-agent network. Subsequently, cooperative Q-learning can be applied as an efficient approach to manage the resources of a multi-agent network. Furthermore, the proposed approach considers the quality of service (QoS) for each user and fairness in the network. In comparison with prior work, the proposed approach can bring more than a four-fold increase in the number of supported femtocells while using cooperative Q-learning to reduce resource allocation overhead.« less