skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Amitay, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Experiments were conducted to investigate the use of coherent vortical structures for boundary layer re-energization in a laminar boundary layer. The structures were generated artificially in the form of a hairpin train using a synthetic jet actuator to ensure repeatability for assessing the control. The structures act as a proxy for naturally occurring large-scale motions found in turbulent boundary layers. The hairpin train was controlled by both a static pin and a jet-assisted surface-mounted actuator (JASMA), and the results were captured using particle image velocimetry (PIV). Planar PIV was used to run a parameter study on several actuator strengths, angles, and heights along the domain mid-plane. Stereoscopic PIV measurements conducted downstream were aggregated into a volume of data for further analysis of the control of one particular hairpin train generation case. It was found that both the passive control pin and the active control JASMA contribute turbulent kinetic energy and downwash downstream to increase mixing and momentum injection into the boundary layer. 
    more » « less