Fleshy macroalgae dominate the hard bottom, shallow waters along the Western Antarctic Peninsula (WAP). Although there are numerous reports on their ecology, geographic distribution, and to a lesser extent, vertical (depth) distribution in the northern portions of the WAP, much less is known farther south along the central portion of the WAP. Here we provide the first report of the vertical distributions of brown and red fleshy macroalgae in this region based on scuba-derived collections at 14 study sites between southern Anvers Island (64.8°S, 64.4°W) in the north and central Marguerite Bay (68.7°S, 67.5°W) in the south. Although several overstory brown macroalgal species that can be common along the northern WAP including
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Desmarestia anceps andCystosphaera jacquinotii are mostly absent from the central WAP, the vertical distributions of the brown macroalgaeDesmarestia menziesii andHimantothallus grandifolius are similar to the northern WAP even though their percent cover is much lower. Likewise, the vertical distribution of the 14 most widespread red macroalgae, where they occur, mirrored those known from the northern part of the WAP even though macroalgal cover, biomass, and total species richness declined markedly to the south across this region due to increasing sea ice concentrations.Free, publicly-accessible full text available November 30, 2024 -
Macroalgal forests dominate shallow hard bottom areas along the northern portion of the Western Antarctic Peninsula (WAP). Macroalgal biomass and diversity are known to be dramatically lower in the southern WAP and at similar latitudes around Antarctica, but few reports detail the distributions of macroalgae or associated macroinvertebrates in the central WAP. We used satellite imagery to identify 14 sites differing in sea ice coverage but similar in terms of turbidity along the central WAP. Fleshy macroalgal cover was strongly, negatively correlated with ice concentration, but there was no significant correlation between macroinvertebrate cover and sea ice. Overall community (all organisms) diversity correlated negatively with sea ice concentration and positively with fleshy macroalgal cover, which ranged from around zero at high ice sites to 80% at the lowest ice sites. Nonparametric, multivariate analyses resulted in clustering of macroalgal assemblages across most of the northern sites of the study area, although they differed greatly with respect to macroalgal percent cover and diversity. Analyses of the overall communities resulted in three site clusters corresponding to high, medium, and low fleshy macroalgal cover. At most northern sites, macroalgal cover was similar across depths, but macroalgal and macroinvertebrate distributions suggested increasing effects of ice scour in shallower depths towards the south. Hindcast projections based on correlations of ice and macroalgal cover data suggest that macroalgal cover at many sites could have been varying substantially over the past 40 years. Similarly, based on predicted likely sea ice decreases by 2100, projected increases in macroalgal cover at sites that currently have high ice cover and low macroalgal cover are substantial, often with only a future 15% decrease in sea ice. Such changes would have important ramifications to future benthic communities and to understanding how Antarctic macroalgae may contribute to future blue carbon sequestration.more » « less
-
Abstract Meiosis and syngamy generate an alternation between two ploidy stages, but the timing of these two processes varies widely across taxa, thereby generating life cycle diversity. One hypothesis suggests that life cycles with long‐lived haploid stages are correlated with selfing, asexual reproduction, or both. Though mostly studied in angiosperms, selfing and asexual reproduction are often associated with marginal habitats. Yet, in haploid‐diploid macroalgae, these two reproductive modes have subtle but unique consequences whereby predictions from angiosperms may not apply. Along the western Antarctic Peninsula, there is a thriving macroalgal community, providing an opportunity to explore reproductive system variation in haploid‐diploid macroalgae at high latitudes where endemism is common.
Plocamium sp. is a widespread and abundant red macroalga observed within this ecosystem. We sampled 12 sites during the 2017 and 2018 field seasons and used 10 microsatellite loci to describe the reproductive system. Overall genotypic richness and evenness were high, suggesting sexual reproduction. Eight sites were dominated by tetrasporophytes, but there was strong heterozygote deficiency, suggesting intergametophytic selfing. We observed slight differences in the prevailing reproductive mode among sites, possibly due to local conditions (e.g., disturbance) that may contribute to site‐specific variation. It remains to be determined whether high levels of selfing are characteristic of macroalgae more generally at high latitudes, due to the haploid‐diploid life cycle, or both. Further investigations of algal life cycles will likely reveal the processes underlying the maintenance of sexual reproduction more broadly across eukaryotes, but more studies of natural populations are required. -
Foraging strategies in gentoo penguins ( Pygoscelis papua ) have been well studied (e.g. Croxall et al. 1988, Robinson & Hindell 1996, Lescroël et al. 2004, Takahashi et al. 2008, Xavier et al. 2017). The general consensus is this largest member of the three pygoscelid penguins displays both nearshore benthic and pelagic foraging tactics to consume combinations of crustaceans and fish. In a recent study, Carpenter-Kling et al. (2017) reported that gentoos at sub-Antarctic Marion Island displayed a novel foraging strategy that consisted of alternating typical lengthy foraging trips with much shorter nearshore afternoon trips. They suggest the latter foraging behaviour may be a response to suboptimal feeding conditions caused by local environmental change. This novel discovery reinforces the fact that, despite considerable study, not all foraging tactics in penguins have been documented. In this paper, we describe what we believe to be, yet another undocumented foraging tactic employed by gentoos.more » « less
-
The shallow benthos along the western Antarctic Peninsula supports brown macroalgal forests with dense amphipod assemblages, commonly including Gondogeneia antarctica (Amsler et al. 2014). Gondogeneia antarctica and most other amphipods are chemically deterred from consuming the macroalgae (Amsler et al. 2014). They primarily consume diatoms, other microalgae, filamentous macroalgae and a few undefended macroalgal species, including Palmaria decipiens (Aumack et al. 2017). Although unpalatable when alive, G. antarctica and other amphipods will consume the chemically defended brown algae Himantothallus grandifolius and Desmarestia anceps within a few weeks of death (Amsler et al. 2014).more » « less