 Home
 Search Results
 Page 1 of 1
Search for: All records

Total Resources1
 Resource Type

00010
 Availability

10
 Author / Contributor
 Filter by Author / Creator


An, Chen (1)

Chu, Rena (1)

Pierce, Lillian B (1)

#Tyler Phillips, Kenneth E. (0)

#Willis, Ciara (0)

& AbreuRamos, E. D. (0)

& Abramson, C. I. (0)

& AbreuRamos, E. D. (0)

& Adams, S.G. (0)

& Ahmed, K. (0)

& Ahmed, Khadija. (0)

& AkcilOkan, O. (0)

& Akuom, D. (0)

& Aleven, V. (0)

& AndrewsLarson, C. (0)

& Archibald, J. (0)

& Arnett, N. (0)

& Arya, G. (0)

& Attari, S. Z. (0)

& Ayala, O. (0)

 Filter by Editor


& Spizer, S. M. (0)

& . Spizer, S. (0)

& Ahn, J. (0)

& Bateiha, S. (0)

& Bosch, N. (0)

& Brennan K. (0)

& Brennan, K. (0)

& Chen, B. (0)

& Chen, Bodong (0)

& Drown, S. (0)

& Ferretti, F. (0)

& Higgins, A. (0)

& J. Peters (0)

& Kali, Y. (0)

& RuizArias, P.M. (0)

& S. Spitzer (0)

& Spitzer, S. (0)

& Spitzer, S.M. (0)

(submitted  in Review for IEEE ICASSP2024) (0)

 (0)


Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

Abstract In 1980 Carleson posed a question on the minimal regularity of an initial data function in a Sobolev space $H^s({\mathbb {R}}^n)$ that implies pointwise convergence for the solution of the linear Schrödinger equation. After progress by many authors, this was recently resolved (up to the endpoint) by Bourgain, whose counterexample construction for the Schrödinger maximal operator proved a necessary condition on the regularity, and Du and Zhang, who proved a sufficient condition. Analogues of Carleson’s question remain open for many other dispersive partial differential equations. We develop a flexible new method to approach such problems and prove that for any integer $k\geq 2$, if a degree $k$ generalization of the Schrödinger maximal operator is bounded from $H^s({\mathbb {R}}^n)$ to $L^1(B_n(0,1))$, then $s \geq \frac {1}{4} + \frac {n1}{4((k1)n+1)}.$ In dimensions $n \geq 2$, for every degree $k \geq 3$, this is the first result that exceeds a longstanding barrier at $1/4$. Our methods are numbertheoretic, and in particular apply the Weil bound, a consequence of the truth of the Riemann Hypothesis over finite fields.more » « less