Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The ability to estimate 3D human body pose and movement, also known as human pose estimation (HPE), enables many applications for home-based health monitoring, such as remote rehabilitation training. Several possible solutions have emerged using sensors ranging from RGB cameras, depth sensors, millimeter-Wave (mmWave) radars, and wearable inertial sensors. Despite previous efforts on datasets and benchmarks for HPE, few dataset exploits multiple modalities and focuses on home-based health monitoring. To bridge this gap, we present mRI1, a multi-modal 3D human pose estimation dataset with mmWave, RGB-D, and Inertial Sensors. Our dataset consists of over 160k synchronized frames from 20 subjects performing rehabilitation exercises and supports the benchmarks of HPE and action detection. We perform extensive experiments using our dataset and delineate the strength of each modality. We hope that the release of mRI can catalyze the research in pose estimation, multi-modal learning, and action understanding, and more importantly facilitate the applications of home-based health monitoring.more » « less
-
Millimeter-Wave (mmWave) radar can enable high-resolution human pose estimation with low cost and computational requirements. However, mmWave data point cloud, the primary input to processing algorithms, is highly sparse and carries significantly less information than other alternatives such as video frames. Furthermore, the scarce labeled mmWave data impedes the development of machine learning (ML) models that can generalize to unseen scenarios. We propose a fast and scalable human pose estimation (FUSE) framework that combines multi-frame representation and meta-learning to address these challenges. Experimental evaluations show that FUSE adapts to the unseen scenarios 4× faster than current supervised learning approaches and estimates human joint coordinates with about 7 cm mean absolute error.more » « less
-
Parkinson’s disease (PD) is a neurological disorder with complicated and disabling motor and non-motor symptoms. The complexity of PD pathology is amplified due to its dependency on patient diaries and the neurologist’s subjective assessment of clinical scales. A significant amount of recent research has explored new cost-effective and subjective assessment methods pertaining to PD symptoms to address this challenge. This article analyzes the application areas and use of mobile and wearable technology in PD research using the PRISMA methodology. Based on the published papers, we identify four significant fields of research: diagnosis, prognosis and monitoring, predicting response to treatment, and rehabilitation. Between January 2008 and December 2021, 31,718 articles were published in four databases: PubMed Central, Science Direct, IEEE Xplore, and MDPI. After removing unrelated articles, duplicate entries, non-English publications, and other articles that did not fulfill the selection criteria, we manually investigated 1559 articles in this review. Most of the articles (45%) were published during a recent four-year stretch (2018–2021), and 19% of the articles were published in 2021 alone. This trend reflects the research community’s growing interest in assessing PD with wearable devices, particularly in the last four years of the period under study. We conclude that there is a substantial and steady growth in the use of mobile technology in the PD contexts. We share our automated script and the detailed results with the public, making the review reproducible for future publications.more » « less
-
Rehabilitation is a crucial process for patients suffering from motor disorders. The current practice is performing rehabilitation exercises under clinical expert supervision. New approaches are needed to allow patients to perform prescribed exercises at their homes and alleviate commuting requirements, expert shortages, and healthcare costs. Human joint estimation is a substantial component of these programs since it offers valuable visualization and feedback based on body movements. Camera-based systems have been popular for capturing joint motion. However, they have high-cost, raise serious privacy concerns, and require strict lighting and placement settings. We propose a millimeter-wave (mmWave)-based assistive rehabilitation system (MARS) for motor disorders to address these challenges. MARS provides a low-cost solution with a competitive object localization and detection accuracy. It first maps the 5D time-series point cloud from mmWave to a lower dimension. Then, it uses a convolution neural network (CNN) to estimate the accurate location of human joints. MARS can reconstruct 19 human joints and their skeleton from the point cloud generated by mmWave radar. We evaluate MARS using ten specific rehabilitation movements performed by four human subjects involving all body parts and obtain an average mean absolute error of 5.87 cm for all joint positions. To the best of our knowledge, this is the first rehabilitation movements dataset using mmWave point cloud. MARS is evaluated on the Nvidia Jetson Xavier-NX board. Model inference takes only 64 s and consumes 442 J energy. These results demonstrate the practicality of MARS on low-power edge devices.more » « less
-
Movement disorders, such as Parkinson’s disease, affect more than 10 million people worldwide. Gait analysis is a critical step in the diagnosis and rehabilitation of these disorders. Specifically, step and stride lengths provide valuable insights into the gait quality and rehabilitation process. However, traditional approaches for estimating step length are not suitable for continuous daily monitoring since they rely on special mats and clinical environments. To address this limitation, this article presents a novel and practical step-length estimation technique using low-power wearable bend and inertial sensors. Experimental results show that the proposed model estimates step length with 5.49% mean absolute percentage error and provides accurate real-time feedback to the user.more » « less