Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tropical cyclones (TCs) are among the most devastating natural hazards for coastal regions, and their response to human activities has broad socio-economic relevance. So far, how TC responds to climate change mitigation remains unknown, complicating the design of adaptation policies. Using net-zero and negative carbon emission experiments, we reveal a robust hemisphere-asymmetric hysteretic TC response to CO2reduction. During the decarbonization phase, the Northern Hemisphere TC frequency continues to decrease for several more decades, while the Southern Hemisphere oceans abruptly shifts to a stormier state, with the timescales depending on mitigation details. Such systematic changes are largely attributed to the planetary-scale reorganization of vertical wind shear and midlevel upward motion associated with the hysteretic southward migration of the Intertropical Convergence Zone, underpinned by the Atlantic Meridional Overturning Circulation and El Niño-like mean state changes. The hemispheric contrast in TC response suggests promising benefits for most of the world’s population from human action to mitigate greenhouse gas warming, but it may also exacerbate regional socioeconomic disparities, for example by putting more pressure on small open-ocean island states in the Southern Hemisphere to adapt to TC risks.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available December 1, 2025
-
Emergent climate change patterns originating from deep ocean warming in climate mitigation scenariosThe global oceans absorb most of the surplus heat from anthropogenic warming, but it is unclear how this heat accumulation will affect the Earth’s climate under climate mitigation scenarios. Here we show that this stored heat will be released at a much slower rate than its accumulation, resulting in a robust pattern of surface ocean warming and consequent regional precipitation. The surface ocean warming is pronounced over subpolar to polar regions and the equatorial eastern Pacific where oceans are weakly stratified to allow vigorous heat release from the deep ocean to the surface layer. We also demonstrate that this ocean warming pattern largely explains changes in the precipitation pattern, including the southward shift of the Intertropical Convergence Zone and more moistening in high latitudes. This study suggests that deep ocean warming may hinder climate recovery in some regions, even if carbon neutrality or net negative emissions are successfully achieved.more » « less
-
El Niño-Southern Oscillation (ENSO) sea surface temperature (SST) anomaly skewness encapsulates the nonlinear processes of strong ENSO events and affects future climate projections. Yet, its response to CO2 forcing remains not well understood. Here, we find ENSO skewness hysteresis in a large ensemble CO2 removal simulation. The positive SST skewness in the central-to-eastern tropical Pacific gradually weakens (most pronounced near the dateline) in response to increasing CO2, but weakens even further once CO2 is ramped down. Further analyses reveal that hysteresis of the Intertropical Convergence Zone migration leads to more active and farther eastward-located strong eastern Pacific El Niño events, thus decreasing central Pacific ENSO skewness by reducing the amplitude of the central Pacific positive SST anomalies and increasing the scaling effect of the eastern Pacific skewness denominator, i.e., ENSO intensity, respectively. The reduction of eastern Pacific El Niño maximum intensity, which is constrained by the SST zonal gradient of the projected background El Niño-like warming pattern, also contributes to a reduction of eastern Pacific SST skewness around the CO2 peak phase. This study highlights the divergent responses of different strong El Niño regimes in response to climate change.more » « less
-
El Niño–Southern Oscillation (ENSO) is the strongest interannual climate variability with far-reaching socioeconomic consequences. Many studies have investigated ENSO-projected changes under future greenhouse warming, but its responses to plausible mitigation behaviors remain unknown. We show that ENSO sea surface temperature (SST) variability and associated global teleconnection patterns exhibit strong hysteretic responses to carbon dioxide (CO2) reduction based on the 28-member ensemble simulations of the CESM1.2 model under an idealized CO2 ramp-up and ramp-down scenario. There is a substantial increase in the ensemble-averaged eastern Pacific SST anomaly variance during the ramp-down period compared to the ramp-up period. Such ENSO hysteresis is mainly attributed to the hysteretic response of the tropical Pacific Intertropical Convergence Zone meridional position to CO2 removal and is further supported by several selected single-member Coupled Model Intercomparison Project Phase 6 (CMIP6) model simulations. The presence of ENSO hysteresis leads to its amplified and prolonged impact in a warming climate, depending on the details of future mitigation pathways.more » « less