skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "An, Ziyan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent advancements in federated learning (FL) have greatly facilitated the development of decentralized collaborative applications, particularly in the domain of Artificial Intelligence of Things (AIoT). However, a critical aspect missing from the current research landscape is the ability to enable data-driven client models with symbolic reasoning capabilities. Specifically, the inherent heterogeneity of participating client devices poses a significant challenge, as each client exhibits unique logic reasoning properties. Failing to consider these device-specific specifications can result in critical properties being missed in the client predictions, leading to suboptimal performance. In this work, we propose a new training paradigm that leverages temporal logic reasoning to address this issue. Our approach involves enhancing the training process by incorporating mechanically generated logic expressions for each FL client. Additionally, we introduce the concept of aggregation clusters and develop a partitioning algorithm to effectively group clients based on the alignment of their temporal reasoning properties. We evaluate the proposed method on two tasks: a real-world traffic volume prediction task consisting of sensory data from fifteen states and a smart city multi-task prediction utilizing synthetic data. The evaluation results exhibit clear improvements, with performance accuracy improved by up to 54% across all sequential prediction models. 
    more » « less
  2. Recent progressions in federated learning (FL) have facilitated the development of decentralized collaborative Internet-of-Things (IoT) applications. However, data-driven FL algorithms face the challenge of heterogeneity in participating IoT devices, including their deployment environment and calibration settings. Fail to follow these device-specific properties can degenerate the model performance. To address this issue, we present FedSTL in this poster abstract, which is a two-staged personalized FL framework with clustering for sequential prediction tasks in IoT. FedSTL first identifies client properties as Signal Temporal Logic (STL) specifications. Then, a partitioning component of FedSTL associates each client to an aggregation center, while the framework continues to infer properties for the cluster. At the training stage, both cluster and client models are encouraged to follow customized properties to achieve a hierarchical property enhancing strategy. Further, we show preliminary results of FedSTL in this poster abstract under a synthetic multitask IoT environment and a real-world traffic prediction scenario. 
    more » « less