skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Andar, Abhay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microneedle (MN) technology is an optimal choice for the delivery of drugs via the transdermal route, with a minimally invasive procedure. MN applications are varied from drug delivery, cosmetics, tissue engineering, vaccine delivery, and disease diagnostics. The MN is a biomedical device that offers many advantages including but not limited to a painless experience, being time-effective, and real-time sensing. This research implements additive manufacturing (AM) technology to fabricate MN arrays for advanced therapeutic applications. Stereolithography (SLA) was used to fabricate six MN designs with three aspect ratios. The MN array included conical-shaped 100 needles (10 × 10 needle) in each array. The microneedles were characterized using optical and scanning electron microscopy to evaluate the dimensional accuracy. Further, mechanical and insertion tests were performed to analyze the mechanical strength and skin penetration capabilities of the polymeric MN. MNs with higher aspect ratios had higher deformation characteristics suitable for penetration to deeper levels beyond the stratum corneum. MNs with both 0.3 mm and 0.4 mm base diameters displayed consistent force–displacement behavior during a skin-equivalent penetration test. This research establishes guidelines for fabricating polymeric MN for high-accuracy and low-cost 3D printing. 
    more » « less
  2. null (Ed.)
    Drug delivery through the skin offers many advantages such as avoidance of hepatic first-pass metabolism, maintenance of steady plasma concentration, safety, and compliance over oral or parenteral pathways. However, the biggest challenge for transdermal delivery is that only a limited number of potent drugs with ideal physicochemical properties can passively diffuse and intercellularly permeate through skin barriers and achieve therapeutic concentration by this route. Significant efforts have been made toward the development of approaches to enhance transdermal permeation of the drugs. Among them, microneedles represent one of the microscale physical enhancement methods that greatly expand the spectrum of drugs for transdermal and intradermal delivery. Microneedles typically measure 0.1–1 mm in length. In this review, microneedle materials, fabrication routes, characterization techniques, and applications for transdermal delivery are discussed. A variety of materials such as silicon, stainless steel, and polymers have been used to fabricate solid, coated, hollow, or dissolvable microneedles. Their implications for transdermal drug delivery have been discussed extensively. However, there remain challenges with sustained delivery, efficacy, cost-effective fabrication, and large-scale manufacturing. This review discusses different modes of characterization and the gaps in manufacturing technologies associated with microneedles. This review also discusses their potential impact on drug delivery, vaccine delivery, disease diagnostic, and cosmetics applications. 
    more » « less
  3. null (Ed.)
    Microneedles provide a transdermal pathway for drug delivery, cosmetic infusion, vaccine administration, and disease diagnostics. Microneedle fabrication relies on the interplay of several variables which include design parameters, material properties, and processing conditions. In this research, our group explores the effect of design parameters and process variables for laser ablation of microneedles within a Polymethyl methacrylate (PMMA) mold. An Ytterbium laser (200W) was utilized to study the effect of five inputs factors (laser power, pulse width, number of repetitions, laser waveform, and interval time between laser pulses) on two output factors (diameter and height) of the fabricated microneedles. Polydimethylsiloxane (PDMS) polymer was cast within the PMMA microneedle mold. Scanning electron microscopy (SEM) was employed to image topographical features of the microneedles. Further, mechanical testing of the microneedles was conducted to evaluate the buckling load and deformation behavior of the microneedle array. A 20W pulse laser with trapezoidal waveform resulted in optimal microneedle topography with an aspect ratio of 1.2. ANOVA results (α = 0.05) depicted that laser power and number of repetitions were significant factors determining the geometrical features of the microneedle array. This research establishes a framework for the design and manufacturing of customized microneedles for precision medicine. 
    more » « less