skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Andersen, Morten"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present JWST-NIRCam narrowband, 4.05μm Brαimages of the Sgr C Hiiregion, located in the central molecular zone (CMZ) of the Galaxy. Unlike any Hiiregion in the solar vicinity, the Sgr C plasma is dominated by filamentary structure in both Brαand the radio continuum. Some bright filaments, which form a fractured arc with a radius of about 1.85 pc centered on the Sgr C star-forming molecular clump, likely trace ionization fronts. The brightest filaments form a “π-shaped” structure in the center of the Hiiregion. Fainter filaments radiate away from the surface of the Sgr C molecular cloud. The filaments are emitting optically thin free–free emission, as revealed by spectral index measurements from 1.28 GHz (MeerKAT) to 97 GHz (Atacama Large Millimeter/submillimeter Array). But, the negative in-band 1 to 2 GHz spectral index in the MeerKAT data alone reveals the presence of a nonthermal component across the entire Sgr C Hiiregion. We argue that the plasma flow in Sgr C is controlled by magnetic fields, which confine the plasma to ropelike filaments or sheets. This results in the measured nonthermal component of low-frequency radio emission plasma, as well as a plasmaβ(thermal pressure divided by magnetic pressure) below 1, even in the densest regions. We speculate that all mature Hiiregions in the CMZ, and galactic nuclei in general, evolve in a magnetically dominated, low plasmaβregime. 
    more » « less
    Free, publicly-accessible full text available April 2, 2026
  2. Abstract We present James Webb Space Telescope (JWST) Near Infrared Camera observations of the massive star-forming molecular cloud Sagittarius C (Sgr C) in the Central Molecular Zone (CMZ). In conjunction with ancillary mid-IR and far-IR data, we characterize the two most massive protostars in Sgr C via spectral energy distribution (SED) fitting, estimating that they each have current masses ofm*∼ 20Mand surrounding envelope masses of ∼100M. We report a census of lower-mass protostars in Sgr C via a search for infrared counterparts to millimeter continuum dust cores found with the Atacama Large Millimeter/submillimeter Array (ALMA). We identify 88 molecular hydrogen outflow knot candidates originating from outflows from protostars in Sgr C, the first such unambiguous detections in the infrared in the CMZ. About a quarter of these are associated with flows from the two massive protostars in Sgr C; these extend for over 1 pc and are associated with outflows detected in ALMA SiO line data. An additional ∼40 features likely trace shocks in outflows powered by lower-mass protostars throughout the cloud. We report the discovery of a new star-forming region hosting two prominent bow shocks and several other line-emitting features driven by at least two protostars. We infer that one of these is forming a high-mass star given an SED-derived mass ofm*∼ 9Mand associated massive (∼90M) millimeter core and water maser. Finally, we identify a population of miscellaneous molecular hydrogen objects that do not appear to be associated with protostellar outflows. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  3. Recent years have seen a surge of interest in the community studying the effect of ultraviolet radiation environment, predominantly set by OB stars, on protoplanetary disc evolution and planet formation. This is important because a significant fraction of planetary systems, potentially including our own, formed in close proximity to OB stars. This is a rapidly developing field, with a broad range of observations across many regions recently obtained or recently scheduled. In this paper, stimulated by a series of workshops on the topic, we take stock of the current and upcoming observations. We discuss how the community can build on this recent success with future observations to make progress in answering the big questions of the field, with the broad goal of disentangling how external photoevaporation contributes to shaping the observed (exo)planet population. Both existing and future instruments offer numerous opportunities to make progress towards this goal. 
    more » « less
    Free, publicly-accessible full text available May 2, 2026
  4. Abstract Oxic pelagic clays are an important component of seafloor sediment that may hold valuable information about past ocean chemistry due to their affinity for and accumulation of biogeochemically important metals. We present a new approach to calculating site‐specific sedimentation rates (SRs) by comparing authigenic sediment thorium isotope compositions (230Th/232Th) to seawater dissolved230Th/232Th in a suite of deep (>3,000 m) pelagic core sites. We extracted the authigenic sediment fraction using an HHAc leach protocol, which major element chemistry (Al, Mn, Fe, Ti) suggested was less affected by lithogenic contamination than the HCl leach. Four different methods were tested for extracting the appropriate initial230Th/232Th from seawater: using either the nearest water column station (methods 1 and 2) or a regionally averaged profile (methods 3 and 4) and using either the bottommost profile measurement (methods 1 and 3) or linear regression of the profile and extrapolation to the seafloor (methods 2 and 4). Method 3 outperformed the other methods in reconstructing previously published SRs from pelagic clays in the North Pacific. The new thorium‐based SRs were then combined with estimates from the total sediment thickness on ocean crust and non‐lithogenic cobalt accumulation to determine the best estimates for SRs of oxic pelagic clays. The Pacific has the lowest SR (median 0.28 cm/kyr), while the Atlantic is higher (median 0.46 cm/kyr) and the Indian Ocean is highest (median 0.75 cm/kyr). These new estimates are consistent with the expected spatial patterns of sedimentation, but they revise the absolute SR values downward from available gridded SR maps. 
    more » « less
  5. Abstract We present near-infrared (NIR) and optical observations of the Type Ic supernova (SN Ic) SN 2021krf obtained between days 13 and 259 at several ground-based telescopes. The NIR spectrum at day 68 exhibits a rising K -band continuum flux density longward of ∼2.0 μ m, and a late-time optical spectrum at day 259 shows strong [O i ] 6300 and 6364 Å emission-line asymmetry, both indicating the presence of dust, likely formed in the SN ejecta. We estimate a carbon-grain dust mass of ∼2 × 10 −5 M ⊙ and a dust temperature of ∼900–1200 K associated with this rising continuum and suggest the dust has formed in SN ejecta. Utilizing the one-dimensional multigroup radiation-hydrodynamics code STELLA, we present two degenerate progenitor solutions for SN 2021krf, characterized by C–O star masses of 3.93 and 5.74 M ⊙ , but with the same best-fit 56 Ni mass of 0.11 M ⊙ for early times (0–70 days). At late times (70–300 days), optical light curves of SN 2021krf decline substantially more slowly than those expected from 56 Co radioactive decay. Lack of H and He lines in the late-time SN spectrum suggests the absence of significant interaction of the ejecta with the circumstellar medium. We reproduce the entire bolometric light curve with a combination of radioactive decay and an additional powering source in the form of a central engine of a millisecond pulsar with a magnetic field smaller than that of a typical magnetar. 
    more » « less