skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Andersen, ed., Ken"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The current conventional paradigm of ocean food web structure inserts one full level or more of microzooplankton heterotrophic consumption, a substantial energy drop, between phytoplankton and mesozooplankton. Using a dataset with contemporaneous measurements of primary production (PP), size-fractioned mesozooplankton biomass, and micro- and mesozooplankton grazing rates from 10 tropical to temperate ocean ecosystems, we examined whether the structural inefficiencies in this paradigm allow sufficient energy transfer to support active metabolism and growth of observed zooplankton standing stocks. Zooplankton carbon requirements (ZCR) were determined from allometric equations that account for ecosystem differences in temperature and size structure. ZCRs were relatively low (∼30% of PP or less) for both oligotrophic systems and bloom biomass accumulation in eutrophic coastal waters. Higher relative ZCRs (>30% PP) were associated with elevated mesozooplankton grazing scenarios (bloom declines, abundant salps), advective subsidies, and open-ocean upwelling systems. Microzooplankton generally dominated as grazers of PP but were equal or secondary to direct herbivory as nutritional support for mesozooplankton in five of eight regional studies. All systems were able to satisfy ZCR within the conventional food-web interpretation, but balanced open-ocean upwelling systems required the most efficient alignments of contributions from microzooplankton grazing, direct herbivory, and carnivory to do so.

     
    more » « less