skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Anderson, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kazarinoff, P. (Ed.)
    STEM technician education programs face a world in which cutting-edge technologies are transforming existing industries and creating new ones at an unprecedented pace. In light of this, the NSF ATE project Preparing Technicians for the Future of Work conducted industry site interviews and regional convenings of academic partners and industry leaders representing a wide range of technical fields to learn how technology impacts technician job tasks and roles. Through these activities, the project identified three skill areas common across multiple technologies and deemed essential for future STEM technicians: data knowledge/analysis, advanced digital literacy, and business knowledge/processes. These “cross-disciplinary STEM core” skill sets and recommendations for integrating them into technical programs are described in A Framework for a Cross-Disciplinary STEM Core. To facilitate adoption of the Framework at a systemic level, the project is sharing an adoption toolkit with concrete steps a college can take, tools it can use with employers to prioritize STEM Core skill sets and faculty activities for identifying where prioritized skills are taught within existing program curriculum and instructional gaps where new cross-disciplinary skill sets could be easily integrated. 
    more » « less
  2. Two regional universities have completed the first round of a three-year collaborative NSF Research Experience for Teachers grant focused on human-centered design and appropriate technology for developing countries. In this transformative research experience, teachers travel to global community partner sites to engage in learning projects aimed to enhance their understanding of engineering and intercultural awareness. Upon return from their immersion experience, the teachers complete an intensive, two-week curriculum development workshop. The teachers then pilot the resulting lesson(s) in their classroom, make revisions as necessary, and share their finalized curriculum with other STEM educators via the TeachEngineering website. Throughout the experience, teachers benefit professionally through integrated development activities and cultivate greater self-awareness and understanding of culture. First, this paper will summarize the project to date. Then, we present observations from participants’ reflections, semi-structured interview, and pre/post intercultural assessments. Next, we highlight the collaborative outreach and capacity-building efforts which resulted in a new community partner and immersion site. Finally, we discuss the unique opportunities and challenges associated with navigating international travel and immersion experiences during the COVID-19 pandemic. 
    more » « less
  3. Abstract Superconducting on-chip filter banks provide a scalable, space saving solution to create imaging spectrometers at millimetre and submillimetre wavelengths. We present an easy to realise, lithographed superconducting filter design with a high tolerance to fabrication error. Using a capacitively coupled $$\lambda /2$$ λ / 2 microstrip resonator to define a narrow ( $$\lambda /\Delta \lambda = 300$$ λ / Δ λ = 300 ) spectral pass band, the filtered output of a given spectrometer channel directly connects to a lumped-element kinetic inductance detector. We show the tolerance analysis of our design, demonstrating $$<11\%$$ < 11 % change in filter quality factor to any one realistic fabrication error and a full filter-bank efficiency forecast to be 50% after accounting for fabrication errors and dielectric loss tangent. 
    more » « less
  4. Abstract We present the detection and characterization of fluctuations in linearly polarized emission from the atmosphere above the South Pole. These measurements make use of data from the SPT-3G receiver on the South Pole Telescope in three frequency bands centered at 95, 150, and 220 GHz. We use the cross-correlation between detectors to produce an unbiased estimate of the power in StokesI,Q, andUparameters on large angular scales. Our results are consistent with the polarized signal being produced by the combination of Rayleigh scattering of thermal radiation from the ground and thermal emission from a population of horizontally aligned ice crystals with an anisotropic distribution described by Kolmogorov turbulence. The measured spatial scaling, frequency scaling, and elevation dependence of the polarized emission are explained by this model. Polarized atmospheric emission has the potential to significantly impact observations on the large angular scales being targeted by searches for inflationary B-mode CMB polarization. We present the distribution of measured angular power spectrum amplitudes in StokesQandIfor 4 yr of Austral winter observations, which can be used to simulate the impact of atmospheric polarization and intensity fluctuations at the South Pole on a specified experiment and observation strategy. We present a mitigation strategy that involves both downweighting significantly contaminated observations and subtracting a polarized atmospheric signal from the 150 GHz band maps. In observations with the SPT-3G instrument, the polarized atmospheric signal is a well-understood and subdominant contribution to the measured noise after implementing the mitigation strategies described here. 
    more » « less
    Free, publicly-accessible full text available March 11, 2026
  5. Neonicotinoids (NNs) are commonly found throughout the environment on surfaces such as seeds, soil, vegetation, and blowing dust particles. However, there is a paucity of data on the kinetics and oxidation products formed on contact with the atmosphere which limits understanding of their potentially far-reaching impacts. In this study, in situ attenuated total reflectance (ATR) FTIR spectroscopy was used to investigate the OH oxidation of thin films of three solid NNs, imidacloprid (IMD), dinotefuran (DNF) and clothianidin (CLD) at 295 ± 3 K. The experimentally measured reaction probabilities based on initial rates of NN loss are (1.6 ± 0.8) × 10 −2 for IMD, (1.5 ± 0.6) × 10 −2 for DNF and (0.9 ± 0.2) × 10 −2 for CLD (±1 σ ), suggesting initial NN lifetimes with respect to OH of 10–17 days. The kinetics were interpreted using a multiphase kinetics model, KM-SUB, which showed that the OH uptake and reaction occurred primarily in the surface layer. Products identified by mass spectrometry included carbonyl-, alcohol- and olefin-containing species formed via hydrogen abstraction from aliphatic C–H groups. Additionally, carbonyl-containing desnitro and urea derivative products were observed from secondary reactions of the initially formed photodegradation products. Reaction with OH will contribute to NN loss both during the day as well as at night when there are non-photolytic sources of this radical. Thus, OH reactions with both the parent neonicotinoid and its photodegradation products should be considered in assessing their environmental impacts. 
    more » « less