skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Anderson, B. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We investigate a 15‐day period in October 2011. Auroral observations by the Special Sensor Ultraviolet Spectrographic Imager instrument onboard the Defense Meteorological Satellite Program F16, F17, and F18 spacecraft indicate that the polar regions were covered by weak cusp‐aligned arc (CAA) emissions whenever the interplanetary magnetic field (IMF) clock angle was small, |θ| < 45°, which amounted to 30% of the time. Simultaneous observations of ions and electrons in the tail by the Cluster C4 and Geotail spacecraft showed that during these intervals dense (≈1 cm−3) plasma was observed, even as far from the equatorial plane of the tail as |ZGSE| ≈ 13RE. The ions had a pitch angle distribution peaking parallel and antiparallel to the magnetic field and the electrons had pitch angles that peaked perpendicular to the field. We interpret the counter‐streaming ions and double loss‐cone electrons as evidence that the plasma was trapped on closed field lines, and acted as a source for the CAA emission across the polar regions. This suggests that the magnetosphere was almost entirely closed during these periods. We further argue that the closure occurred as a consequence of dual‐lobe reconnection. Our finding forces a significant re‐evaluation of the magnetic topology of the magnetosphere during periods of northwards IMF. 
    more » « less
  2. We present a statistical analysis of the occurrence of bifurcations of the Region 2 (R2) Field-Aligned Current (FAC) region, observed by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). Previously, these have been shown to occur as the polar cap contracts after substorm onset, the beginning of the growth phase. During this phase both the Region 1 (R1) and R2 currents move equatorwards as the polar cap expands. Following onset, the R1 FAC region contracts polewards but the R2 FAC continues to expand equatorwards before eventually fading. At the same time, a new R2 FAC develops equatorwards of the R1 FAC. We have proposed that the bifurcated FACs formed during substorms are associated with plasma injections from the magnetotail into the inner magnetosphere, and that they might be the FAC signature associated with Sub-Auroral Polarization Streams (SAPS). We investigate the seasonal dependence of the occurrence of bifurcations from 2010 to 2016, determining whether they occur predominantly at dawn or dusk. Region 2 Bifurcations (R2Bs) are observed most frequently in the summer hemisphere and at dusk, and we discuss the possible influence of ionospheric conductance. We also discuss a newly discovered UT dependence of the R2B occurrences between 2011 and 2014. This dependence is characterized by broad peaks in occurrence near 09 and 21 UT in both hemispheres. Reasons for such a preference in occurrence are explored. 
    more » « less
  3. Dunlop, M.; Lühr, H. (Ed.)
    Birkeland currents that flow in the auroral zones produce perturbation magnetic fields that may be detected using magnetometers onboard low-Earth orbit satellites. The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) uses magnetic field data from the attitude control system of each Iridium satellite. These data are processed to obtain the location, intensity and dynamics of the Birkeland currents. The methodology is based on an orthogonal basis function expansion and associated data fitting. The theory of magnetic fields and currents on spherical shells provides the mathematical basis for generating the AMPERE science data products. The application of spherical cap harmonic basis and elementary current system methods to the Iridium data are discussed and the procedures for generating the AMPERE science data products are described. 
    more » « less