skip to main content

Search for: All records

Creators/Authors contains: "Anderson, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We report on the discovery of linear filaments observed in the CO(1-0) emission for a ∼2′ field of view toward the Sgr E star-forming region, centered at (l,b) = (358.°720, 0.°011). The Sgr E region is thought to be at the turbulent intersection of the “far dust lane” associated with the Galactic bar and the Central Molecular Zone (CMZ). This region is subject to strong accelerations, which are generally thought to inhibit star formation, yet Sgr E contains a large number of Hiiregions. We present12CO(1-0),13CO(1-0), and C18O(1-0) spectral line observations from the Atacama Large Millimeter/submillimeter Array and provide measurements of the physical and kinematic properties for two of the brightest filaments. These filaments have widths (FWHMs) of ∼0.1 pc and are oriented nearly parallel to the Galactic plane, with angles from the Galactic plane of ∼2°. The filaments are elongated, with lower-limit aspect ratios of ∼5:1. For both filaments, we detect two distinct velocity components that are separated by about 15 km s−1. In the C18O spectral line data, with ∼0.09 pc spatial resolution, we find that these velocity components have relatively narrow (∼1–2 km s−1) FWHM line widths when compared to other sources toward the Galactic center. Themore »properties of these filaments suggest that the gas in the Sgr E complex is being “stretched,” as it is rapidly accelerated by the gravitational field of the Galactic bar while falling toward the CMZ, a result that could provide insights into the extreme environment surrounding this region and the large-scale processes that fuel this environment.

    « less
  2. Abstract We investigate the kinematic properties of Galactic H ii regions using radio recombination line (RRL) emission detected by the Australia Telescope Compact Array at 4–10 GHz and the Jansky Very Large Array at 8–10 GHz. Our H ii region sample consists of 425 independent observations of 374 nebulae that are relatively well isolated from other, potentially confusing sources and have a single RRL component with a high signal-to-noise ratio. We perform Gaussian fits to the RRL emission in position-position–velocity data cubes and discover velocity gradients in 178 (42%) of the nebulae with magnitudes between 5 and 200 m s − 1 arcsec − 1 . About 15% of the sources also have an RRL width spatial distribution that peaks toward the center of the nebula. The velocity gradient position angles appear to be random on the sky with no favored orientation with respect to the Galactic plane. We craft H ii region simulations that include bipolar outflows or solid body rotational motions to explain the observed velocity gradients. The simulations favor solid body rotation since, unlike the bipolar outflow kinematic models, they are able to produce both the large, >40 m s − 1 arcsec − 1 , velocitymore »gradients and also the RRL width structure that we observe in some sources. The bipolar outflow model, however, cannot be ruled out as a possible explanation for the observed velocity gradients for many sources in our sample. We nevertheless suggest that most H ii region complexes are rotating and may have inherited angular momentum from their parent molecular clouds.« less
  3. Context. Ionized interstellar gas is an important component of the interstellar medium and its lifecycle. The recent evidence for a widely distributed highly ionized warm interstellar gas with a density intermediate between the warm ionized medium (WIM) and compact H  II regions suggests that there is a major gap in our understanding of the interstellar gas. Aims. Our goal is to investigate the properties of the dense WIM in the Milky Way using spectrally resolved SOFIA GREAT [N  II ] 205 μm fine-structure lines and Green Bank Telescope hydrogen radio recombination lines (RRL) data, supplemented by spectrally unresolved Herschel PACS [N  II ] 122μm data, and spectrally resolved 12 CO. Methods. We observed eight lines of sight (LOS) in the 20° < l < 30° region in the Galactic plane. We analyzed spectrally resolved lines of [N  II ] at 205 μm and RRL observations, along with the spectrally unresolved Herschel PACS 122 μm emission, using excitation and radiative transfer models to determine the physical parameters of the dense WIM. We derived the kinetic temperature, as well as the thermal and turbulent velocity dispersions from the [N  II ] and RRL linewidths. Results. The regions with [N  II ] 205more »μm emission are characterized by electron densities, n ( e ) ~ 10−35 cm −3 , temperatures range from 3400 to 8500 K, and nitrogen column densities N(N + ) ~ 7 × 10 16 to 3 × 10 17 cm −2 . The ionized hydrogen column densities range from 6 × 10 20 to 1.7 × 10 21 cm −2 and the fractional nitrogen ion abundance x (N + ) ~ 1.1 × 10 −4 to 3.0 × 10 −4 , implying an enhanced nitrogen abundance at a distance ~4.3 kpc from the Galactic Center. The [N  II ] 205 μm emission lines coincide with CO emission, although often with an offset in velocity, which suggests that the dense warm ionized gas is located in, or near, star-forming regions, which themselves are associated with molecular gas. Conclusions. These dense ionized regions are found to contribute ≳50% of the observed [C  II ] intensity along these LOS. The kinetic temperatures we derive are too low to explain the presence of N + resulting from electron collisional ionization and/or proton charge transfer of atomic nitrogen. Rather, these regions most likely are ionized by extreme ultraviolet (EUV) radiation from nearby star-forming regions or as a result of EUV leakage through a clumpy and porous interstellar medium.« less
  4. The morphology of the Milky Way is still a matter of debate. In order to shed light on uncertainties surrounding the structure of the Galaxy, in this paper, we study the imprint of spiral arms on the distribution and properties of its molecular gas. To do so, we take full advantage of the SEDIGISM (Structure, Excitation, and Dynamics of the Inner Galactic Interstellar Medium) survey that observed a large area of the inner Galaxy in the 13 CO (2–1) line at an angular resolution of 28′′. We analyse the influences of the spiral arms by considering the features of the molecular gas emission as a whole across the longitude–velocity map built from the full survey. Additionally, we examine the properties of the molecular clouds in the spiral arms compared to the properties of their counterparts in the inter-arm regions. Through flux and luminosity probability distribution functions, we find that the molecular gas emission associated with the spiral arms does not differ significantly from the emission between the arms. On average, spiral arms show masses per unit length of ~10 5 –10 6 M ⊙ kpc −1 . This is similar to values inferred from data sets in which emission distributionsmore »were segmented into molecular clouds. By examining the cloud distribution across the Galactic plane, we infer that the molecular mass in the spiral arms is a factor of 1.5 higher than that of the inter-arm medium, similar to what is found for other spiral galaxies in the local Universe. We observe that only the distributions of cloud mass surface densities and aspect ratio in the spiral arms show significant differences compared to those of the inter-arm medium; other observed differences appear instead to be driven by a distance bias. By comparing our results with simulations and observations of nearby galaxies, we conclude that the measured quantities would classify the Milky Way as a flocculent spiral galaxy, rather than as a grand-design one.« less
    Free, publicly-accessible full text available February 1, 2023
  5. There is relatively little known about Galactic star formation in the outer edges of the Milky Way, particularly in the Outer Scutum-Centaurus spiral arm (OSC). Lying about 15 kpc from the center of the Galaxy, the OSC was discovered in 2011 and is the most distant molecular spiral arm of the Milky Way. The OSC warps up to 4 degrees above the Galactic plane and as a result, has been excluded from the scope of many surveys of the Galactic plane, typically confined to a single degree above or below the plane. The goal of our study is to identify radio continuum from HII regions in the OSC in order to better understand the population of high-mass star formation regions in the outer Galaxy. We observed 12 HII Regions in the OSC using the Very Large Array at 10 GHz. Of our 12 targets, 7 are re-observations of undetected sources from Armentrout et al. (2017). The remaining 5 targets are sources without previously observed 10 GHz radio continuum data. We identify 10 GHz radio continuum associated with 7 of our OSC HII region targets for the first time. Assuming one dominant ionizing source per HII region, we assign spectral typesmore »from O9 to O5.5 for these sources, depending on their distance and continuum intensity. The remaining 5 nondetections represent lower-mass (B-type) star-forming regions below the sensitivity limit of our survey. These regions represent very high-mass star formation on the outer edge of the Galaxy, where densities and metallicities might be more similar to that of a much younger Milky Way or lower mass galaxies like the Magellanic Clouds.« less
  6. HII regions are the archetypical tracers of high-mass star formation. Because of their high luminosities, they can be seen across the entire Galactic disk from mid-infrared to radio wavelengths. A uniformly sensitive survey of Galactic HII regions across the disk would allow us to constrain the properties of Galactic structure and star formation. We have cataloged over 8000 HII regions and candidates in the WISE Catalog of Galactic HII Regions (astro.phys.wvu.edu/wise), but only 2000 of these are confirmed HII regions. The work is ongoing, but from our survey completeness limits and population synthesis modeling, we predict there are nearly 10,000 HII regions in the Milky Way created by a central star of type B2 or earlier. A population of especially interesting HII regions trace the Outer Scutum-Centaurus spiral arm (OSC), the most distant molecular spiral arm in the Milky Way. These regions represent star formation at low densities and low metallicities, similar to the conditions in galaxies like the Large Magellanic Cloud or a much younger Milky Way. To date, we have detected high-mass star formation at 17 locations in the OSC, with the most distant source at 23.5 kpc from the Sun and 17 kpc from the Galactic Center.more »They have molecular cloud masses up to 105 Msol and central stellar types as early as O4. By comparing molecular and stellar masses, we can begin to put constraints on the star formation efficiency of these distant outer Galaxy sources. We map the ionized gas using the Very Large Array at X-band in the D-configuration. We map the 13CO, HCN, and HCO+ molecular gas emission using the Argus array on the Green Bank Telescope, producing individual 5 arcmin maps with 8 arcsec resolution and 0.5 K sensitivity in 20 minutes.« less