Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Product of experts (PoE) are layered networks in which the value at each node is an AND (or product) of the values (possibly negated) at its inputs. These were introduced as a neural network architecture that can efficiently learn to generate high-dimensional data which satisfy many low-dimensional constraints---thereby allowing each individual expert to perform a simple task. PoEs have found a variety of applications in learning. We study the problem of identifiability of a product of experts model having a layer of binary latent variables, and a layer of binary observables that are iid conditional on the latents. The previous best upper bound on the number of observables needed to identify the model was exponential in the number of parameters. We show: (a) When the latents are uniformly distributed, the model is identifiable with a number of observables equal to the number of parameters (and hence best possible). (b) In the more general case of arbitrarily distributed latents, the model is identifiable for a number of observables that is still linear in the number of parameters (and within a factor of two of best-possible). The proofs rely on root interlacing phenomena for some special three-term recurrences.more » « lessFree, publicly-accessible full text available May 2, 2025
-
Free, publicly-accessible full text available September 1, 2025
-
The ALICE Collaboration reports measurements of the semi-inclusive distribution of charged-particle jets recoiling from a high transverse momentum (high) charged hadron, inand central Pb-Pb collisions at center-of-mass energy per nucleon–nucleon collisionTeV. The large uncorrelated background in central Pb-Pb collisions is corrected using a data-driven statistical approach which enables precise measurement of recoil jet distributions over a broad range inand jet resolution parameter. Recoil jet yields are reported for, 0.4, and 0.5 in the rangeand, whereis the azimuthal angular separation between hadron trigger and recoil jet. The low-reach of the measurement explores unique phase space for studying jet quenching, the interaction of jets with the quark–gluon plasma generated in high-energy nuclear collisions. Comparison ofdistributions fromand central Pb-Pb collisions probes medium-induced jet energy loss and intra-jet broadening, while comparison of their acoplanarity distributions explores in-medium jet scattering and medium response. The measurements are compared to theoretical calculations incorporating jet quenching.
©2024 CERN, for the ALICE Collaboration 2024 CERN Free, publicly-accessible full text available July 1, 2025 -
The ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum (high) hadron trigger in proton-proton and central Pb-Pb collisions at. A data-driven statistical method is used to mitigate the large uncorrelated background in central Pb-Pb collisions. Recoil jet distributions are reported for jet resolution parameter, 0.4, and 0.5 in the rangeand trigger-recoil jet azimuthal separation. The measurements exhibit a marked medium-induced jet yield enhancement at lowand at large azimuthal deviation from. The enhancement is characterized by its dependence on, which has a slope that differs from zero by. Comparisons to model calculations incorporating different formulations of jet quenching are reported. These comparisons indicate that the observed yield enhancement arises from the response of the QGP medium to jet propagation.
© 2024 CERN, for the ALICE Collaboration 2024 CERN Free, publicly-accessible full text available July 1, 2025 -
Free, publicly-accessible full text available June 1, 2025
-
Measurements of the-dependent flow vector fluctuations in Pb–Pb collisions atusing azimuthal correlations with the ALICE experiment at the Large Hadron Collider are presented. A four-particle correlation approach [ALICE Collaboration, ] is used to quantify the effects of flow angle and magnitude fluctuations separately. This paper extends previous studies to additional centrality intervals and provides measurements of the-dependent flow vector fluctuations atwith two-particle correlations. Significant-dependent fluctuations of theflow vector in Pb–Pb collisions are found across different centrality ranges, with the largest fluctuations of up tobeing present in the 5% most central collisions. In parallel, no evidence of significant-dependent fluctuations oforis found. Additionally, evidence of flow angle and magnitude fluctuations is observed with more thansignificance in central collisions. These observations incollisions indicate where the classical picture of hydrodynamic modeling with a common symmetry plane breaks down. This has implications for hard probes at high, which might be biased by-dependent flow angle fluctuations of at least 23% in central collisions. Given the presented results, existing theoretical models should be reexamined to improve our understanding of initial conditions, quark–gluon plasma properties, and the dynamic evolution of the created system.
©2024 CERN, for the ALICE Collaboration 2024 CERN Free, publicly-accessible full text available June 1, 2025 -
pairs may be produced in photonuclear collisions, either from the decays of photoproducedmesons or directly as nonresonantpairs. Measurements ofphotoproduction probe the couplings between theand charged kaons with photons and nuclear targets. The kaon-proton scattering occurs at energies far above those available elsewhere. We present the first measurement of coherent photoproduction ofpairs on lead ions in ultraperipheral collisions using the ALICE detector, including the first investigation of directproduction. There is significantproduction at low transverse momentum, consistent with coherent photoproduction on lead targets. In the mass rangeabove theresonance, for rapidityand, the measured coherent photoproduction cross section is. The center-of-mass energy per nucleon of the photon-nucleus (Pb) systemranges from 33 to 188 GeV, far higher than previous measurements on heavy-nucleus targets. The cross section is larger than expected forphotoproduction alone. The mass spectrum is fit to a cocktail consisting ofdecays, directphotoproduction, and interference between the two. The confidence regions for the amplitude and relative phase angle for directphotoproduction are presented.
© 2024 CERN, for the ALICE Collaboration 2024 CERN Free, publicly-accessible full text available May 1, 2025 -
A bstract Measurements of inclusive charged-particle jet production in pp and p-Pb collisions at center-of-mass energy per nucleon-nucleon collision
= 5$$ \sqrt{s_{\textrm{NN}}} $$ . 02 TeV and the corresponding nuclear modification factor are presented, using data collected with the ALICE detector at the LHC. Jets are reconstructed in the central rapidity region |$$ {R}_{\textrm{pPb}}^{\textrm{ch}\ \textrm{jet}} $$ η jet|< 0. 5 from charged particles using the anti-k Talgorithm with resolution parametersR = 0. 2, 0. 3, and 0. 4. Thep T-differential inclusive production cross section of charged-particle jets, as well as the corresponding cross section ratios, are reported for pp and p-Pb collisions in the transverse momentum range 10< $$ {p}_{\textrm{T},\textrm{jet}}^{\textrm{ch}} $$ < 140 GeV/c and 10< $$ {p}_{\textrm{T},\textrm{jet}}^{\textrm{ch}} $$ < 160 GeV/c , respectively, together with the nuclear modification factor in the range 10$$ {R}_{\textrm{pPb}}^{\textrm{ch}\ \textrm{jet}} $$ < $$ {p}_{\textrm{T},\textrm{jet}}^{\textrm{ch}} $$ < 140 GeV/c . The analysis extends thep Trange of the previously-reported charged-particle jet measurements by the ALICE Collaboration. The nuclear modification factor is found to be consistent with one and independent of the jet resolution parameter with the improved precision of this study, indicating that the possible influence of cold nuclear matter effects on the production cross section of charged-particle jets in p-Pb collisions at = 5$$ \sqrt{s_{\textrm{NN}}} $$ . 02 TeV is smaller than the current precision. The obtained results are in agreement with other minimum bias jet measurements available for RHIC and LHC energies, and are well reproduced by the NLO perturbative QCD Powheg calculations with parton shower provided by Pythia 8 as well as by Jetscape simulations.Free, publicly-accessible full text available May 1, 2025 -
A bstract The ALICE Collaboration reports a search for jet quenching effects in high-multiplicity (HM) proton-proton collisions at
= 13 TeV, using the semi-inclusive azimuthal-difference distribution ∆$$ \sqrt{s} $$ φ of charged-particle jets recoiling from a high transverse momentum (high-p T, trig) trigger hadron. Jet quenching may broaden the ∆φ distribution measured in HM events compared to that in minimum bias (MB) events. The measurement employs ap T, trig-differential observable for data-driven suppression of the contribution of multiple partonic interactions, which is the dominant background. While azimuthal broadening is indeed observed in HM compared to MB events, similar broadening for HM events is observed for simulations based on the PYTHIA 8 Monte Carlo generator, which does not incorporate jet quenching. Detailed analysis of these data and simulations show that the azimuthal broadening is due to bias of the HM selection towards events with multiple jets in the final state. The identification of this bias has implications for all jet quenching searches where selection is made on the event activity.Free, publicly-accessible full text available May 1, 2025