When screening for infectious diseases, group testing has proven to be a cost efficient alternative to individual level testing. Cost savings are realized by testing pools of individual specimens (eg, blood, urine, saliva, and so on) rather than by testing the specimens separately. However, a common concern that arises in group testing is the so‐called “dilution effect.” This occurs if the signal from a positive individual's specimen is diluted past an assay's threshold of detection when it is pooled with multiple negative specimens. In this article, we propose a new statistical framework for group testing data that merges estimation and case identification, which are often treated separately in the literature. Our approach considers analyzing continuous biomarker levels (eg, antibody levels, antigen concentrations, and so on) from pooled samples to estimate both a binary regression model for the probability of disease and the biomarker distributions for cases and controls. To increase case identification accuracy, we then show how estimates of the biomarker distributions can be used to select diagnostic thresholds on a pool‐by‐pool basis. Our proposals are evaluated through numerical studies and are illustrated using hepatitis B virus data collected on a prison population in Ireland.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
00000010000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Andrew Brown, Derek (1)
-
Bilder, Christopher R. (1)
-
McMahan, Christopher S. (1)
-
Mokalled, Stefani C. (1)
-
Tebbs, Joshua M. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.