skip to main content


Search for: All records

Creators/Authors contains: "Andrews, Holly M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Soil ammonia (NH3) emissions are seldom included in ecosystem nutrient budgets; however, they may represent substantial pathways for ecosystem nitrogen (N) loss, especially in arid regions where hydrologic N losses are comparatively small. To characterize how multiple factors affect soil NH3 emissions, we measured NH3 losses from 6 dryland sites along a gradient in soil pH, atmospheric N deposition, and rainfall. We also enriched soils with ammonium (NH4+), to determine whether N availability would limit emissions, and measured NH3 emissions with passive samplers in soil chambers following experimental wetting. Because the volatilization of NH3 is sensitive to pH, we hypothesized that NH3 emissions would be higher in more alkaline soils and that they would increase with increasing NH4+ availability. Consistent with this hypothesis, average soil NH3 emissions were positively correlated with average site pH (R2 = 0.88, P = 0.004), ranging between 0.77 ± 0.81 µg N-NH3 m−2 h−1 at the least arid and most acidic site and 24.2 ± 16.0 µg N-NH3 m−2 h−1 at the most arid and alkaline site. Wetting soils while simultaneously adding NH4+ increased NH3 emissions from alkaline and moderately acidic soils (F1,35 = 14.7, P < 0.001), suggesting that high N availability can stimulate NH3 emissions even when pH is less than optimal for NH3 volatilization. Thus, both pH and N availability act as proximate controls over NH3 emissions suggesting that these N losses may limit how much N accumulates in arid ecosystems. 
    more » « less
  2. Abstract

    Soil drying and wetting cycles can produce pulses of nitric oxide (NO) and nitrous oxide (N2O) emissions with substantial effects on both regional air quality and Earth’s climate. While pulsed production of N emissions is ubiquitous across ecosystems, the processes governing pulse magnitude and timing remain unclear. We studied the processes producing pulsed NO and N2O emissions at two contrasting drylands, desert and chaparral, where despite the hot and dry conditions known to limit biological processes, some of the highest NO and N2O flux rates have been measured. We measured N2O and NO emissions every 30 min for 24 h after wetting soils with isotopically-enriched nitrate and ammonium solutions to determine production pathways and their timing. Nitrate was reduced to N2O within 15 min of wetting, with emissions exceeding 1000 ng N–N2O m−2 s−1and returning to background levels within four hours, but the pulse magnitude did not increase in proportion to the amount of ammonium or nitrate added. In contrast to N2O, NO was emitted over 24 h and increased in proportion to ammonium addition, exceeding 600 ng N–NO m−2 s−1in desert and chaparral soils. Isotope tracers suggest that both ammonia oxidation and nitrate reduction produced NO. Taken together, our measurements demonstrate that nitrate can be reduced within minutes of wetting summer-dry desert soils to produce large N2O emission pulses and that multiple processes contribute to long-lasting NO emissions. These mechanisms represent substantial pathways of ecosystem N loss that also contribute to regional air quality and global climate dynamics.

     
    more » « less
  3. Abstract

    Warming‐induced changes in precipitation regimes, coupled with anthropogenically enhanced nitrogen (N) deposition, are likely to increase the prevalence, duration, and magnitude of soil respiration pulses following wetting via interactions among temperature and carbon (C) and N availability. Quantifying the importance of these interactive controls on soil respiration is a key challenge as pulses can be large terrestrial sources of atmospheric carbon dioxide (CO2) over comparatively short timescales. Using an automated sensor system, we measured soil CO2flux dynamics in the Colorado Desert—a system characterized by pronounced transitions from dry‐to‐wet soil conditions—through a multi‐year series of experimental wetting campaigns. Experimental manipulations included combinations of C and N additions across a range of ambient temperatures and across five sites varying in atmospheric N deposition. We found soil CO2pulses following wetting were highly predictable from peak instantaneous CO2flux measurements. CO2pulses consistently increased with temperature, and temperature at time of wetting positively correlated to CO2pulse magnitude. Experimentally adding N along the N deposition gradient generated contrasting pulse responses: adding N increased CO2pulses in low N deposition sites, whereas adding N decreased CO2pulses in high N deposition sites. At a low N deposition site, simultaneous additions of C and N during wetting led to the highest observed soil CO2fluxes reported globally at 299.5 μmol CO2 m−2 s−1. Our results suggest that soils have the capacity to emit high amounts of CO2within small timeframes following infrequent wetting, and pulse sizes reflect a non‐linear combination of soil resource and temperature interactions. Importantly, the largest soil CO2emissions occurred when multiple resources were amended simultaneously in historically resource‐limited desert soils, pointing to regions experiencing simultaneous effects of desertification and urbanization as key locations in future global C balance.

     
    more » « less