Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We report the discovery of three faint and ultrafaint dwarf galaxies—Sculptor A, Sculptor B, and Sculptor C—in the direction of NGC 300 (D= 2.0 Mpc), a Large Magellanic Cloud–mass galaxy. Deep ground-based imaging with Gemini/GMOS resolves all three dwarf galaxies into stars, each displaying a red giant branch indicative of an old, metal-poor stellar population. No young stars or Higas are apparent, and the lack of a GALEX UV detection suggests that all three systems are quenched. Sculptor C (D= 2.04 Mpc;MV= −9.1 ± 0.1 mag orLV= (3.7 ) × 105L⊙) is consistent with being a satellite of NGC 300. Sculptor A (D= 1.35 Mpc;MV= −6.9 ± 0.3 mag orLV= (5 ) × 104L⊙) is likely in the foreground of NGC 300 and at the extreme edge of the Local Group, analogous to the recently discovered ultrafaint Tucana B in terms of its physical properties and environment. Sculptor B (D= 2.48 Mpc;MV= −8.1 ± 0.3 mag orLV= (1.5 ) × 105L⊙) is likely in the background, but future distance measurements are necessary to solidify this statement. It is also of interest due to its quiescent state and low stellar mass. Both Sculptor A and B are ≳2–4rvirfrom NGC 300 itself. The discovery of three dwarf galaxies in isolated or low-density environments offers an opportunity to study the varying effects of ram-pressure stripping, reionization, and internal feedback in influencing the star formation history of the faintest stellar systems.more » « lessFree, publicly-accessible full text available December 10, 2025
-
Abstract We present multi-epoch optical spectropolarimetric and imaging polarimetric observations of the nearby Type II supernova (SN) 2023ixf discovered in M101 at a distance of 6.85 Mpc. The first imaging polarimetric observations were taken +2.33 days (60085.08 MJD) after the explosion, while the last imaging polarimetric data points (+73.19 and +76.19 days) were acquired after the fall from the light-curve plateau. At +2.33 days there is strong evidence of circumstellar material (CSM) interaction in the spectra and the light curve. A significant level of intrinsic polarizationpr = 1.02% ± 0.07% is seen during this phase, which indicates that this CSM is aspherical. We find that the polarization evolves with time toward the interstellar polarization level during the photospheric phase, which suggests that the recombination photosphere is spherically symmetric. There is a jump in polarization (pr = 0.45% ± 0.08% andpr = 0.62% ± 0.08%) at +73.19 and +76.19 days when the light curve falls from the plateau. This is a phase where polarimetric data are sensitive to nonspherical inner ejecta or a decrease in optical depth into the single-scattering regime. We also present spectropolarimetric data that reveal line (de)polarization during most of the observed epochs. In addition, at +14.50 days we see an “inverse P Cygni” profile in the H and He line polarization, which clearly indicates the presence of asymmetrically distributed material overlying the photosphere. The overall temporal evolution of the polarization is typical for Type II SNe, but the high level of polarization during the rising phase has only been observed in SN 2023ixf.more » « lessFree, publicly-accessible full text available March 20, 2026
-
The superluminous Type IIn supernova ASASSN-15ua: part of a continuum in extreme precursor mass-lossABSTRACT We present a series of ground-based photometry and spectroscopy of the superluminous Type IIn supernova (SN) ASASSN-15ua, which shows evidence for strong interaction with pre-existing dense circumstellar material (CSM). Our observations constrain the speed, mass-loss rate, and extent of the progenitor wind shortly before explosion. A narrow P Cygni absorption component reveals a progenitor wind speed of ∼100 km s−1. As observed in previous SNe IIn, the intermediate-width H α emission became more asymmetric and blueshifted over time, suggesting either asymmetric CSM, an asymmetric explosion, or increasing selective extinction from dust within the post-shock shell or SN ejecta. Based on the CSM radius and speed, we find that the progenitor suffered extreme eruptive mass-loss with a rate of 0.1–1 M⊙ yr−1 during the ∼12 yr immediately before the death of the star that imparted ∼ 1048 erg of kinetic energy to the CSM. Integrating its V-band light curve over the first 170 d after discovery, we find that ASASSN-15ua radiated at least 3 × 1050 erg in visual light alone, giving a lower limit to the total radiated energy that may have approached 1051 erg. ASASSN-15ua exhibits many similarities to two well-studied superluminous SNe IIn: SN 2006tf and SN 2010jl. Based on a detailed comparison of these three, we find that ASASSN-15ua falls in between these two events in a wide variety of observed properties and derived physical parameters, illustrating a continuum of behaviour across superluminous SNe IIn.more » « less
-
ABSTRACT We present multi-epoch spectropolarimetry and spectra for a sample of 14 Type IIn supernovae (SNe IIn). We find that after correcting for likely interstellar polarization, SNe IIn commonly show intrinsic continuum polarization of 1–3 per cent at the time of peak optical luminosity, although a few show weaker or negligible polarization. While some SNe IIn have even stronger polarization at early times, their polarization tends to drop smoothly over several hundred days after peak. We find a tendency for the intrinsic polarization to be stronger at bluer wavelengths, especially at early times. While polarization from an electron scattering region is expected to be grey, scattering of SN light by dusty circumstellar material (CSM) may induce such a wavelength-dependent polarization. For most SNe IIn, changes in polarization degree and wavelength dependence are not accompanied by changes in the position angle, requiring that asymmetric pre-SN mass loss had a persistent geometry. While 2–3 per cent polarization is typical, about 30 per cent of SNe IIn have very low or undetected polarization. Under the simplifying assumption that all SN IIn progenitors have axisymmetric CSM (i.e. disc/torus/bipolar), then the distribution of polarization values we observe is consistent with similarly asymmetric CSM seen from a distribution of random viewing angles. This asymmetry has very important implications for understanding the origin of pre-SN mass loss in SNe IIn, suggesting that it was shaped by binary interaction.more » « less
-
Abstract We present high-cadence optical and ultraviolet (UV) observations of the Type II supernova (SN), SN 2022jox which exhibits early spectroscopic high-ionization flash features of Hi, Heii, Civ, and Nivthat disappear within the first few days after explosion. SN 2022jox was discovered by the Distance Less Than 40 Mpc survey ∼0.75 day after explosion with follow-up spectra and UV photometry obtained within minutes of discovery. The SN reached a peak brightness ofMV∼ −17.3 mag, and has an estimated56Ni mass of 0.04M⊙, typical values for normal Type II SNe. The modeling of the early light curve and the strong flash signatures present in the optical spectra indicate interaction with circumstellar material (CSM) created from a progenitor with a mass-loss rate of . There may also be some indication of late-time CSM interaction in the form of an emission line blueward of Hαseen in spectra around 200 days. The mass-loss rate of SN 2022jox is much higher than the values typically associated with quiescent mass loss from red supergiants, the known progenitors of Type II SNe, but is comparable to inferred values from similar core-collapse SNe with flash features, suggesting an eruptive event or a superwind in the progenitor in the months or years before explosion.more » « less
-
Abstract We perform a comprehensive search for optical precursor emission at the position of SN 2023ixf using data from the DLT40, ZTF, and ATLAS surveys. By comparing the current data set with precursor outburst hydrodynamical model light curves, we find that the probability of a significant outburst within 5 yr of explosion is low, and the circumstellar material (CSM) ejected during any possible precursor outburst is likely smaller than ∼0.015M⊙. By comparing to a set of toy models, we find that, if there was a precursor outburst, the duration must have been shorter than ∼100 days for a typical brightness ofMr≃ −9 mag or shorter than 200 days forMr≃ −8 mag; brighter, longer outbursts would have been discovered. Precursor activity like that observed in the normal Type II SN 2020tlf (Mr≃ −11.5) can be excluded in SN 2023ixf. If the dense CSM inferred by early flash spectroscopy and other studies is related to one or more precursor outbursts, then our observations indicate that any such outburst would have to be faint and only last for days to months, or it occurred more than 5 yr prior to the explosion. Alternatively, any dense, confined CSM may not be due to eruptive mass loss from a single red supergiant progenitor. Taken together, the results of SN 2023ixf and SN 2020tlf indicate that there may be more than one physical mechanism behind the dense CSM inferred around some normal Type II supernovae.more » « less
-
Abstract We present the discovery of an exceptional dimming event in a cool supergiant star in the Local Volume spiral M51. The star, dubbed M51-DS1, was found as part of a Hubble Space Telescope (HST) search for failed supernovae (SNe). The supergiant, which is plausibly associated with a very young (≲6 Myr) stellar population, showed clear variability (amplitude ΔF814W≈ 0.7 mag) in numerous HST images obtained between 1995 and 2016, before suddenly dimming by >2 mag inF814Wsometime between late 2017 and mid-2019. In follow-up data from 2021, the star rebrightened, ruling out a failed supernova. Prior to its near-disappearance, the star was luminous and red (MF814W≲ − 7.6 mag,F606W−F814W= 1.9–2.2 mag). Modeling of the pre-dimming spectral energy distribution of the star favors a highly reddened, very luminous ( –5.7) star withTeff≈ 3700–4700 K, indicative of a cool yellow or post-red supergiant (RSG) with an initial mass of ≈26–40M⊙. However, the local interstellar extinction and circumstellar extinction are uncertain, and could be lower: the near-IR colors are consistent with an RSG, which would be cooler (Teff≲ 3700 K) and slightly less luminous ( –5.3), giving an inferred initial mass of ≈19–22M⊙. In either case, the dimming may be explained by a rare episode of enhanced mass loss that temporarily obscures the star, potentially a more extreme counterpart to the 2019–2020 “Great Dimming” of Betelgeuse. Given the emerging evidence that massive evolved stars commonly exhibit variability that can mimic a disappearing star, our work highlights a substantial challenge in identifying true failed SNe.more » « less
-
Abstract We present near- and mid-infrared (0.9–18μm) photometry of supernova (SN) 2021afdx, which was imaged serendipitously with the James Webb Space Telescope (JWST) as part of its Early Release Observations of the Cartwheel Galaxy. Our ground-based optical observations show it is likely to be a Type IIb SN, the explosion of a yellow supergiant, and its infrared spectral energy distribution (SED) ≈200 days after explosion shows two distinct components, which we attribute to hot ejecta and warm dust. By fitting models of dust emission to the SED, we derive a dust mass of , which is the highest yet observed in a Type IIb SN but consistent with other Type II SNe observed by the Spitzer Space Telescope. We also find that the radius of the dust is significantly larger than the radius of the ejecta, as derived from spectroscopic velocities during the photospheric phase, which implies that we are seeing an infrared echo off of preexisting dust in the progenitor environment, rather than dust newly formed by the SN. Our results show the power of JWST to address questions of dust formation in SNe, and therefore the presence of dust in the early universe, with much larger samples than have been previously possible.more » « less
-
null (Ed.)ABSTRACT The unusual Type IIP SN 2017gmr is revisited in order to pinpoint the origin of its anomalous features, including the peculiar light curve after about 100 d. The hydrodynamic modelling suggests the enormous explosion energy of ≈1052 erg. We find that the light curve with the prolonged plateau/tail transition can be reproduced either in the model with a high hydrogen abundance in the inner ejecta and a large amount of radioactive 56Ni, or in the model with an additional central energy source associated with the fallback/magnetar interaction in the propeller regime. The asymmetry of the late H α emission and the reported linear polarization are reproduced by the model of the bipolar 56Ni ejecta. The similar bipolar structure of the oxygen distribution is responsible for the two-horn structure of the [O i] 6360, 6364 Å emission. The bipolar 56Ni structure along with the high explosion energy are indicative of the magneto-rotational explosion. We identify narrow high-velocity absorption features in H α and He i10 830 Å lines with their origin in the fragmented cold dense shell formed due to the outer ejecta deceleration in a confined circumstellar shell.more » « less
-
Abstract We present high-cadence photometric and spectroscopic observations of SN 2023axu, a classical Type II supernova with an absoluteV-band peak magnitude of –17.2 ± 0.1 mag. SN 2023axu was discovered by the Distance Less Than 40 Mpc (DLT40) survey within 1 day of the last nondetection in the nearby galaxy NGC 2283 at 13.7 Mpc. We modeled the early light curve using a recently updated shock cooling model that includes the effects of line blanketing and found the explosion epoch to be MJD 59971.48 ± 0.03 and the probable progenitor to be a red supergiant. The shock cooling model underpredicts the overall UV data, which point to a possible interaction with circumstellar material. This interpretation is further supported by spectral behavior. We see a ledge feature around 4600 Å in the very early spectra (+1.1 and +1.5 days after the explosion), which can be a sign of circumstellar interaction. The signs of circumstellar material are further bolstered by the presence of absorption features blueward of Hαand Hβat day >40, which is also generally attributed to circumstellar interaction. Our analysis shows the need for high-cadence early photometric and spectroscopic data to decipher the mass-loss history of the progenitor.more » « less