skip to main content


Search for: All records

Creators/Authors contains: "Andrews, M. B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The CMS detector is a general-purpose apparatus that detects high-energy collisions produced at the LHC. Online data quality monitoring of the CMS electromagnetic calorimeter is a vital operational tool that allows detector experts to quickly identify, localize, and diagnose a broad range of detector issues that could affect the quality of physics data. A real-time autoencoder-based anomaly detection system using semi-supervised machine learning is presented enabling the detection of anomalies in the CMS electromagnetic calorimeter data. A novel method is introduced which maximizes the anomaly detection performance by exploiting the time-dependent evolution of anomalies as well as spatial variations in the detector response. The autoencoder-based system is able to efficiently detect anomalies, while maintaining a very low false discovery rate. The performance of the system is validated with anomalies found in 2018 and 2022 LHC collision data. In addition, the first results from deploying the autoencoder-based system in the CMS online data quality monitoring workflow during the beginning of Run 3 of the LHC are presented, showing its ability to detect issues missed by the existing system.

     
    more » « less
    Free, publicly-accessible full text available June 24, 2025
  2. null (Ed.)
  3. A<sc>bstract</sc>

    A search for new physics in top quark production with additional final-state leptons is performed using data collected by the CMS experiment in proton-proton collisions at$$ \sqrt{s} $$s= 13 TeV at the LHC during 2016–2018. The data set corresponds to an integrated luminosity of 138 fb1. Using the framework of effective field theory (EFT), potential new physics effects are parametrized in terms of 26 dimension-six EFT operators. The impacts of EFT operators are incorporated through the event-level reweighting of Monte Carlo simulations, which allows for detector-level predictions. The events are divided into several categories based on lepton multiplicity, total lepton charge, jet multiplicity, and b-tagged jet multiplicity. Kinematic variables corresponding to the transverse momentum (pT) of the leading pair of leptons and/or jets as well as thepTof on-shell Z bosons are used to extract the 95% confidence intervals of the 26 Wilson coefficients corresponding to these EFT operators. No significant deviation with respect to the standard model prediction is found.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  4. Free, publicly-accessible full text available November 1, 2024
  5. Free, publicly-accessible full text available October 1, 2024
  6. Free, publicly-accessible full text available October 1, 2024
  7. A<sc>bstract</sc>

    A search for new physics in final states consisting of at least one photon, multiple jets, and large missing transverse momentum is presented, using proton-proton collision events at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 137 fb1, recorded by the CMS experiment at the CERN LHC from 2016 to 2018. The events are divided into mutually exclusive bins characterized by the missing transverse momentum, the number of jets, the number of b-tagged jets, and jets consistent with the presence of hadronically decaying W, Z, or Higgs bosons. The observed data are found to be consistent with the prediction from standard model processes. The results are interpreted in the context of simplified models of pair production of supersymmetric particles via strong and electroweak interactions. Depending on the details of the signal models, gluinos and squarks of masses up to 2.35 and 1.43 TeV, respectively, and electroweakinos of masses up to 1.23 TeV are excluded at 95% confidence level.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  8. Abstract

    The mass of the top quark is measured in 36.3$$\,\text {fb}^{-1}$$fb-1of LHC proton–proton collision data collected with the CMS detector at$$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$s=13TeV. The measurement uses a sample of top quark pair candidate events containing one isolated electron or muon and at least four jets in the final state. For each event, the mass is reconstructed from a kinematic fit of the decay products to a top quark pair hypothesis. A profile likelihood method is applied using up to four observables per event to extract the top quark mass. The top quark mass is measured to be$$171.77\pm 0.37\,\text {Ge}\hspace{-.08em}\text {V} $$171.77±0.37GeV. This approach significantly improves the precision over previous measurements.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  9. A<sc>bstract</sc>

    A search for high-mass dimuon resonance production in association with one or more b quark jets is presented. The study uses proton-proton collision data collected with the CMS detector at the LHC corresponding to an integrated luminosity of 138 fb1at a center-of-mass energy of 13 TeV. Model-independent limits are derived on the number of signal events with exactly one or more than one b quark jet. Results are also interpreted in a lepton-flavor-universal model with Z′ boson couplings to a bb quark pair (gb), an sb quark pair (gbδbs), and any same-flavor charged lepton (g) or neutrino pair (gν), with|gν|=|g|. For a Z′ boson with a mass$$ {m}_{{\textrm{Z}}^{\prime }} $$mZ= 350 GeV (2 TeV) andbs|< 0.25, the majority of the parameter space with 0.0057 <|g|< 0.35 (0.25 <|g|< 0.43) and 0.0079 < |gb| < 0.46 (0.34 < |gb| < 0.57) is excluded at 95% confidence level. Finally, constraints are set on a Z′ model with parameters consistent with low-energy b → sℓℓmeasurements. In this scenario, most of the allowed parameter space is excluded for a Z′ boson with 350 <$$ {m}_{{\textrm{Z}}^{\prime }} $$mZ< 500 GeV, while the constraints are less stringent for higher$$ {m}_{{\textrm{Z}}^{\prime }} $$mZhypotheses. This is the first dedicated search at the LHC for a high-mass dimuon resonance produced in association with multiple b quark jets, and the constraints obtained on models with this signature are the most stringent to date.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  10. A<sc>bstract</sc>

    The second-order (v2) and third-order (v3) Fourier coefficients describing the azimuthal anisotropy of prompt and nonprompt (from b-hadron decays) J/ψ, as well as prompt ψ(2S) mesons are measured in lead-lead collisions at a center-of-mass energy per nucleon pair of$$ \sqrt{s_{\textrm{NN}}} $$sNN= 5.02 TeV. The analysis uses a data set corresponding to an integrated luminosity of 1.61 nb1recorded with the CMS detector. The J/ψ and ψ(2S) mesons are reconstructed using their dimuon decay channel. Thev2andv3coefficients are extracted using the scalar product method and studied as functions of meson transverse momentum and collision centrality. The measuredv2values for prompt J/ψ mesons are found to be larger than those for nonprompt J/ψ mesons. The prompt J/ψv2values at highpTare found to be underpredicted by a model incorporating only parton energy loss effects in a quark-gluon plasma medium. Prompt and nonprompt J/ψ mesonv3and prompt ψ(2S)v2andv3values are also reported for the first time, providing new information about heavy quark interactions in the hot and dense medium created in heavy ion collisions.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024