- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Ang, Marcus (1)
-
Chaturvedi, Ashwin (1)
-
Jiang, Jianbing_“Jimmy” (1)
-
McCarver, Gavin_A (1)
-
Sinha, Soumalya (1)
-
Vogiatzis, Konstantinos_D (1)
-
Williams, Caroline_K (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Electrocatalytic hydrogen gas production is considered a potential pathway towards carbon‐neutral energy sources. However, the development of this technology is hindered by the lack of efficient, cost‐effective, and environmentally benign catalysts. In this study, a main‐group‐element‐based electrocatalyst,SbSalen, is reported to catalyze the hydrogen evolution reaction (HER) in an aqueous medium. The heterogenized molecular system achieved a Faradaic efficiency of 100 % at −1.4 V vs. NHE with a maximum current density of −30.7 mA/cm2. X‐ray photoelectron spectroscopy of the catalyst‐bound working electrode before and after electrolysis confirmed the molecular stability during catalysis. The turnover frequency was calculated as 43.4 s−1using redox‐peak integration. The kinetic and mechanistic aspects of the electrocatalytic reaction were further examined by computational methods. This study provides mechanistic insights into main‐group‐element electrocatalysts for heterogeneous small‐molecule conversion.more » « less
An official website of the United States government
