Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tidal creeks play a vital role in influencing geospatial evolution and marsh ecological communities in coastal landscapes. However, evaluating the geospatial characteristics of numerous creeks across a site and understanding their ecological relationships pose significant challenges due to the labor-intensive nature of manual delineation from imagery. Traditional methods rely on manual annotation in GIS interfaces, which is slow and tedious. This study explores the application of Attention-based Dense U-Net (ADU-Net), a deep learning image segmentation model, for automatically classifying creek pixels in high-resolution (0.5 m) orthorectified aerial imagery in coastal Georgia, USA. We observed that ADU-Net achieved an outstanding F1 score of 0.98 in identifying creek pixels, demonstrating its ability in tidal creek mapping. The study highlights the potential of deep learning models for automated tidal creek mapping, opening avenues for future investigations into the role of creeks in marshes’ response to environmental changes.more » « less
-
Abstract Predators regulate communities through top‐down control in many ecosystems. Because most studies of top‐down control last less than a year and focus on only a subset of the community, they may miss predator effects that manifest at longer timescales or across whole food webs. In southeastern US salt marshes, short‐term and small‐scale experiments indicate that nektonic predators (e.g., blue crab, fish, terrapins) facilitate the foundational grass,Spartina alterniflora, by consuming herbivorous snails and crabs. To test both how nekton affect marsh processes when the entire animal community is present, and how prior results scale over time, we conducted a 3‐year nekton exclusion experiment in a Georgia salt marsh using replicated 19.6 m2plots. Our nekton exclusions increased densities of plant‐grazing snails and juvenile deposit‐feeding fiddler crab and, in Year 2, reduced predation on tethered juvenile snails, indicating that nektonic predators control these key macroinvertebrates. However, in Year 3, densities of mesopredatory benthic mud crabs increased threefold in nekton exclusions, erasing the tethered snails' predation refuge. Nekton exclusion had no effect onSpartinabiomass, likely because the observed mesopredator release suppressed grazing snail densities and elevated densities of fiddler crabs, whose burrowing alleviates soil stresses. Structural equation modeling supported the hypotheses that nektonic predators and mesopredators control invertebrate communities, with nektonic predators having stronger total effects onSpartinathan mud crabs by controlling densities of species that both suppress (grazers) and facilitate (fiddler crabs) plant growth. These findings highlight that salt marshes can be resilient to multiyear reductions in nektonic predators if mesopredators are present and that multiple pathways of trophic control manifest in different ways over time to mediate community dynamics. These results highlight that larger scale and longer‐term experiments can illuminate community dynamics not previously understood, even in well‐studied ecosystems such as salt marshes.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract In salt marshes of the Southeastern USA, purple marsh crabs (Sesarma reticulatum), hereafterSesarma, aggregate in grazing and burrowing fronts at the heads of tidal creeks, accelerating creek incision into marsh platforms. We explored the effects of this keystone grazer and sediment engineer on salt marsh sediment accumulation, hydrology, and carbon (C) and nitrogen (N) turnover using radionuclides (210Pb and7Be), total hydrolyzable amino acids (THAA), and C and N stable isotopes (δ13C and δ15N) in sediment from pairedSesarma-grazed and un-grazed creeks.Sesarma-grazed-creek sediments exhibited greater bioturbation and tidal inundation compared to sediments in un-grazed creeks, as indicated by larger210Pb and7Be inventories. Total organic carbon (TOC) to total nitrogen (TN) weight ratios (C:N) were higher and δ15N values were lower in grazed-creek sediments than in un-grazed-creek sediments, suggestingSesarmaremove and assimilate N in their tissues, and excrete N with lower δ15N values into sediments. In support of this inference, the percent total carbon (TC) and percent TOC declined by nearly half, percent TN decreased by ~ 80%, and the C:N ratio exhibited a ~ threefold increase betweenSesarmafore-gut and hind-gut contents. An estimated 91% ofSesarma’s diet was derived fromSpartina alterniflora,the region’s dominant salt marsh plant. We found that, asSesarmagrazing fronts progress across marsh landscapes, they enhance the decay ofSpartina-derived organic matter and prolong marsh tidal inundation. These findings highlight the need to better account for the effects of keystone grazers and sediment engineers, likeSesarma, in estimates of the stability and size of blue C stores in coastal wetlands.more » « less
-
Abstract The fate of coastal ecosystems depends on their ability to keep pace with sea-level rise—yet projections of accretion widely ignore effects of engineering fauna. Here, we quantify effects of the mussel , Geukensia demissa , on southeastern US saltmarsh accretion. Multi-season and -tidal stage surveys, in combination with field experiments, reveal that deposition is 2.8-10.7-times greater on mussel aggregations than any other marsh location. Our Delft-3D-BIVALVES model further predicts that mussels drive substantial changes to both the magnitude (±<0.1 cm·yr −1 ) and spatial patterning of accretion at marsh domain scales. We explore the validity of model predictions with a multi-year creekshed mussel manipulation of >200,000 mussels and find that this faunal engineer drives far greater changes to relative marsh accretion rates than predicted (±>0.4 cm·yr −1 ). Thus, we highlight an urgent need for empirical, experimental, and modeling work to resolve the importance of faunal engineers in directly and indirectly modifying the persistence of coastal ecosystems globally.more » « less
-
Abstract Bivalves are becoming an increasingly popular tool to counteract eutrophication, particularly in vegetated coastal ecosystems where synergistic interactions between bivalves and plants can govern important N sequestration pathways. In turn, new calls to evaluate how bivalve densities modify N pools and processes across multiple scales have surfaced.Ribbed mussels,Geukensia demissa, and their relationship with smooth cordgrass present a classic demonstration of positive bivalve‐plant interactions and offer a useful model for assessing density dependence. We measure porewater ammonium concentrations, N stable isotope signatures in cordgrass tissue, and sediment N fluxes in mussel aggregations and in cordgrass‐only plots across a southeastern U.S. salt marsh.In addition to measuring the effect of mussel presence, we evaluate mussel density dependence through a multiscale approach. At the patch scale, we quantify mussel density effects within their aggregations (individuals m−2) while at a larger landscape scale, we quantify mussel density effects on the cordgrass‐only areas they neighbour (individuals ~30 m−2).Porewater ammonium concentrations were halved in mussel biodeposits relative to sediments in cordgrass‐only areas and negatively related to mussel density within aggregations. Leaf clip ẟ15N signatures were nearly 2‰ higher in cordgrass growing among mussel aggregations and increased with increasing patch mussel density. Microcosm incubations showed that mussels enhanced N2flux (i.e., nitrogen removal) and DIN flux (i.e., N regeneration) into the water column, where only nitrogen removal increased with increasing patch‐scale mussel density. Across the marsh landscape, mussel coverage drove ammonium accumulation and N2flux in sediments.Synthesis. Our results suggest that, at the patch scale, mussels stimulate the microbial metabolism of N, the assimilation of this bioavailable N by cordgrass, and nitrogen removal in a positive, density‐dependent manner. Tidal currents redistribute mussel biodeposits from mussel aggregations to surrounding areas, influencing biogeochemical transformations at scales beyond their physical footprint. We emphasize that the N regeneration potential of bivalve populations is a significant metric contributing to their mitigation potential and that bivalve density effects may be non‐linear, vary across patch to ecosystem scales, and have differing implications for the plants with which they interact.more » « less