skip to main content

Search for: All records

Creators/Authors contains: "Angelopoulos, V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 25, 2023
  2. Free, publicly-accessible full text available October 22, 2023
  3. We report on the behavior of precipitating and backscattered energetic electrons as function of latitude, energy and pitch-angle across a wide range of local times. ELFIN’s two spinning satellites from a 450km altitude, near-polar orbit, permit excellent resolution of pitch-angles (22.5deg) well within the loss cone, and allow clear discrimination of locally trapped and field-aligned electrons between 50keV and 5MeV (dE/E ~ 40%). We find that at times of low precipitation (fluxes <10% of trapped) both precipitating and backscattered electrons are present and their ratio is close to 1. This is likely because atmospheric scattering contributes to loss-cone filling, both up and down the field line. When precipitation is significant (flux >10% of trapped, up to an energy Epmax) it dominates the upward-to-downward flux ratio at energies as low as 0.2 times Epmax, rendering that ratio very low (<10%). However, below ~0.2Epmax, as well as above Epmax, backscattering is a significant fraction of precipitation. We discuss the possible reasons for this backscatter. We also discuss the implications of our findings for electron losses from the radiation belts, for modeling atmospheric effects of energetic electron precipitation and for populating the magnetosphere with field-aligned energetic electrons.
  4. Free, publicly-accessible full text available September 27, 2023
  5. Free, publicly-accessible full text available April 22, 2023
  6. Free, publicly-accessible full text available June 1, 2023
  7. Free, publicly-accessible full text available January 28, 2023