skip to main content

Search for: All records

Creators/Authors contains: "Angelopoulos, et al."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In near-Earth space, the magnetosphere, energetic electrons (tens to thousands of kiloelectron volts) orbit around Earth, forming the radiation belts. When scattered by magnetospheric processes, these electrons precipitate to the upper atmosphere, where they deplete ozone, a radiatively active gas, modifying global atmospheric circulation. Relativistic electrons (those above a few hundred kiloelectron volts), can reach the lowest altitudes and have the strongest effects on the upper atmosphere; their loss from the magnetosphere is also important for space weather. Previous models have only considered magnetospheric scattering and precipitation of energetic electrons; atmospheric scattering of such electrons has not been adequately considered, principally due to lack of observations. Here we report the first observations of this process. We find that atmospherically-scattered energetic (relativistic) electrons form a low-intensity, persistent “drizzle”, whose integrated energy flux is comparable to (greater than) that of the more intense but ephemeral precipitation by magnetospheric scattering. Thus, atmospheric scattering of energetic electrons is important for global atmospheric circulation, radiation belt flux evolution, and the repopulation of the magnetosphere with lower-energy, secondary electrons.