skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Angizi, Shaahin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 12, 2025
  2. Free, publicly-accessible full text available April 1, 2025
  3. Free, publicly-accessible full text available April 1, 2025
  4. Free, publicly-accessible full text available March 25, 2025
  5. Free, publicly-accessible full text available March 25, 2025
  6. In this work, we present an efficient Processing in MRAM-Accelerated De Bruijn Graph-based DNA Assembly platform, named PANDA, based on an optimized and hardware-friendly genome assembly algorithm. PANDA is able to assemble large-scale DNA sequence datasets from all-pair overlaps. We first design a PANDA platform that exploits MRAM as computational memory and converts it to a potent processing unit for genome assembly. PANDA can not only execute efficient bulk bit-wise X(N)OR-based comparison/addition operations heavily required for the genome assembly task but also a full set of 2-/3-input logic operations inside the MRAM chip. We then develop a highly parallel and step-by-step hardware-friendly DNA assembly algorithm for PANDA that only requires the developed in-memory logic operations. The platform is then configured with a novel data partitioning and mapping technique that provides local storage and processing to utilize the algorithm level’s parallelism fully. The cross-layer simulation results demonstrate that PANDA reduces the run time and power by a factor of 18 and 11, respectively, compared with CPU. Moreover, speed-ups of up to 2.5 to 10× can be obtained over other recent processing in-memory platforms to perform the same task, like STT-MRAM, ReRAM, and DRAM. 
    more » « less
    Free, publicly-accessible full text available February 2, 2025
  7. Free, publicly-accessible full text available January 1, 2025