skip to main content


Search for: All records

Creators/Authors contains: "Angryk R. A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gianmarco De Francisci Morales ; Claudia Perlich ; Natali Ruchansky ; Nicolas Kourtellis ; Elena Baralis ; Francesco Bonchi (Ed.)
    Free, publicly-accessible full text available September 17, 2024
  2. Bifet A. ; Lorena A.C ; Ribeiro R.P. ; Gama J. ; Abreu p.H. (Ed.)
    This paper presents a post hoc analysis of a deep learning-based full-disk solar flare prediction model. We used hourly full-disk line-of-sight magnetogram images and selected binary prediction mode to predict the occurrence of ≥M1.0-class flares within 24 h. We leveraged custom data augmentation and sample weighting to counter the inherent class-imbalance problem and used true skill statistic and Heidke skill score as evaluation metrics. Recent advancements in gradient-based attention methods allow us to interpret models by sending gradient signals to assign the burden of the decision on the input features. We interpret our model using three post hoc attention methods: (i) Guided Gradient-weighted Class Activation Mapping, (ii) Deep Shapley Additive Explanations, and (iii) Integrated Gradients. Our analysis shows that full-disk predictions of solar flares align with characteristics related to the active regions. The key findings of this study are: (1) We demonstrate that our full disk model can tangibly locate and predict near-limb solar flares, which is a critical feature for operational flare forecasting, (2) Our candidate model achieves an average TSS=0.51±0.05 and HSS=0.38±0.08, and (3) Our evaluation suggests that these models can learn conspicuous features corresponding to active regions from full-disk magnetograms. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  3. Rutkowski L. ; Scherer R. ; Korytkowski M. ; Pedrycz W. ; Tadeusiewicz R. ; Zurada J. (Ed.)
    In this work, we investigate the impact of class imbalance on the accuracy and diversity of synthetic samples generated by conditional generative adversarial networks (CGAN) models. Though many studies utilizing GANs have seen extraordinary success in producing realistic image samples, these studies generally assume the use of well-processed and balanced benchmark image datasets, including MNIST and CIFAR-10. However, well-balanced data is uncommon in real world applications such as detecting fraud, diagnosing diabetes, and predicting solar flares. It is well known that when class labels are not distributed uniformly, the predictive ability of classification algorithms suffers significantly, a phenomenon known as the "class-imbalance problem." We show that the imbalance in the training set can also impact sample generation of CGAN models. We utilize the well known MNIST datasets, controlling the imbalance ratio of certain classes within the data through sampling. We are able to show that both the quality and diversity of generated samples suffer in the presence of class imbalances and propose a novel framework named Two-stage CGAN to produce high-quality synthetic samples in such cases. Our results indicate that the proposed framework provides a significant improvement over typical oversampling and undersampling techniques utilized for class imbalance remediation. 
    more » « less
    Free, publicly-accessible full text available September 14, 2024
  4. Free, publicly-accessible full text available October 1, 2024
  5. Free, publicly-accessible full text available September 1, 2024